Li Xin, Wu Hao, Gao Wang, Jiang Qing
Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China.
Nat Commun. 2025 Jan 13;16(1):615. doi: 10.1038/s41467-025-55921-y.
Correlating the bond strength with the macro strength of metals is crucial for understanding mechanical properties and designing multi-principal-element alloys (MPEAs). Motivated by the role of grain boundaries in the strength of metals, we introduce a predictive model to determine the grain-boundary energies and strength of metals from the cohesive energy and atomic radius. This scheme originates from the d-band characteristics and broken-bond spirit of tight-binding models, and demonstrates that the repulsive/attractive effects play different roles in the variation of bond strength for different metals. Importantly, our framework not only applies to both pure metals and MPEAs, but also unravels the distinction of the bond strength caused by elemental compositions, lattice structures, high-entropy, and amorphous effects. These findings build a physical picture across bond strength, grain-boundary energies and strength of metals by using easily accessible material properties and provide a robust method for the design of high-strength alloys.
将键强度与金属的宏观强度相关联对于理解机械性能和设计多主元合金(MPEA)至关重要。受晶界在金属强度中作用的启发,我们引入了一个预测模型,用于从内聚能和原子半径确定金属的晶界能和强度。该方案源于紧束缚模型的d带特征和断键思想,并表明排斥/吸引效应在不同金属的键强度变化中发挥不同作用。重要的是,我们的框架不仅适用于纯金属和MPEA,还揭示了由元素组成、晶格结构、高熵和非晶效应引起的键强度差异。这些发现通过使用易于获取的材料特性构建了一幅跨越金属键强度、晶界能和强度的物理图景,并为高强度合金的设计提供了一种可靠的方法。