Hao Xiaoyan, Hu Zhengwei, Li Mengjie, Zhang Shuo, Tang Mibo, Hao Chenwei, Qi Shasha, Liang Yuanyuan, Almeida Michael F, Smith Kaitlan, Zuo Chunyan, Feng Yanmei, Guo Mengnan, Ma Dongrui, Li Shuangjie, Wang Zhiyun, Sun Yuemeng, Deng Zhifen, Mao Chengyuan, Xia Zongping, Jiang Yong, Gao Yanxia, Xu Yuming, Schisler Jonathan C, Shi Changhe
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
EMBO J. 2025 Feb;44(4):1249-1273. doi: 10.1038/s44318-024-00351-7. Epub 2025 Jan 13.
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation. Conversely, dysfunctional CHIP disrupts this process, resulting in PDE9A accumulation, increased cGMP hydrolysis, and impaired PKG phosphorylation of CHIP at serine 19. This cascade further amplifies PDE9A accumulation, ultimately disrupting mitophagy and triggering neuronal apoptosis. Elevated PKA levels inhibit PDE9A degradation, further exacerbating this neuronal dysfunction. Notably, pharmacological inhibition of PDE9A via Bay 73-6691 or virus-mediated CHIP expression restored the balance of cGMP/cAMP signalling. These interventions protect against cerebellar neuropathologies, particularly Purkinje neuron mitophagy dysfunction. Thus, PDE9A upregulation considerably exacerbates ataxia associated with CHIP mutations, and targeting the interaction between PDE9A and CHIP is an innovative therapeutic strategy for CHIP-related ataxia.
热休克蛋白70互作蛋白(CHIP)的羧基末端对于通过伴侣蛋白网络和降解途径管理错误折叠和聚集的蛋白质至关重要。在CHIP相关共济失调的临床前啮齿动物模型中,我们观察到CHIP突变导致磷酸二酯酶9A(PDE9A)水平升高,其在这种情况下的作用仍知之甚少。在此,我们研究了PDE9A在CHIP相关共济失调中作用的分子机制,并证明CHIP与PDE9A结合,促进其多聚泛素化和自噬降解。相反,功能失调的CHIP会破坏这一过程,导致PDE9A积累、cGMP水解增加以及CHIP在丝氨酸19处的PKG磷酸化受损。这一级联反应进一步放大了PDE9A的积累,最终破坏线粒体自噬并引发神经元凋亡。升高的PKA水平抑制PDE9A降解,进一步加剧这种神经元功能障碍。值得注意的是,通过Bay 73 - 6691对PDE9A进行药理抑制或病毒介导的CHIP表达恢复了cGMP/cAMP信号的平衡。这些干预措施可预防小脑神经病理学变化,尤其是浦肯野神经元线粒体自噬功能障碍。因此,PDE9A上调显著加剧了与CHIP突变相关的共济失调,靶向PDE9A与CHIP之间的相互作用是治疗CHIP相关共济失调的一种创新策略。