Lindner S, Rahbany N, Pauly C, Gines L, Mandal S, Williams O A, Muzha A, Krueger A, Bachelot R, Couteau C, Becher C
Fachrichtung Physik, Universität des Saarlandes, Campus Geb. E2.6, 66123 Saarbrücken, Germany.
Institut für Physik, Karl-Franzens-Universität Graz, Universitätsplatz 5, 8010 Graz, Austria.
Nanotechnology. 2025 Feb 7;36(13). doi: 10.1088/1361-6528/ada9a4.
Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence (PL) spectrum and therefore adapt the individual color center to desired properties. We show successful coupling of a single nanodiamond hosting silicon-vacancy color centers to a plasmonic double bowtie antenna structure. To predict the spectrum of the coupled system, the PL spectrum of the silicon vacancy centers was measured before the coupling process and convoluted with the antenna resonance spectrum. After transferring the nanodiamond to the antenna the combined spectrum was measured again. The measurement agrees well with the calculated prediction of the coupled system and therefore confirms successful coupling.
色心因其在室温下的工作特性和高光稳定性而成为很有前景的单光子发射器。特别是,使用纳米金刚石作为主体材料在传感和计量方面具有吸引力。此外,作为一种固态系统,它能够与光子系统相结合,以调节发射强度和光致发光(PL)光谱,从而使单个色心适应所需的特性。我们展示了单个承载硅空位色心的纳米金刚石与等离子体双蝴蝶结天线结构的成功耦合。为了预测耦合系统的光谱,在耦合过程之前测量了硅空位中心的PL光谱,并与天线共振光谱进行卷积。将纳米金刚石转移到天线上之后,再次测量了组合光谱。测量结果与耦合系统的计算预测结果吻合良好,因此证实了成功耦合。