E. L. Ginzton Laboratory, Stanford University , Stanford, California 94305, United States.
Geballe Laboratory for Advanced Materials, Stanford University , Stanford, California 94305, United States.
Nano Lett. 2016 Jan 13;16(1):212-7. doi: 10.1021/acs.nanolett.5b03515. Epub 2015 Dec 24.
We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV(-)) color centers in diamond as quantum emitters. Hybrid diamond-SiC structures are realized by combining the growth of nano- and microdiamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV(-) color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ion-implantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV(-) on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV(-) centers. Scanning confocal photoluminescence measurements reveal optically active SiV(-) lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow line widths and small inhomogeneous broadening of SiV(-) lines from all-diamond nanopillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV(-) centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.
我们展示了一种新方法,用于工程化包含带负电荷的硅空位(SiV(-))色心的 IV 族半导体量子光子结构,这些色心位于金刚石中作为量子发射器。通过在碳化硅(3C 或 4H 多型体)衬底上生长纳米和微金刚石,然后将这些金刚石晶体用作图案转移的硬掩模,实现了金刚石-SiC 混合结构。在金刚石从分子金刚石种子(类金刚石)合成过程中掺入 SiV(-),而无需离子注入或退火。我们表明,相同的生长技术可用于在高纯度块状金刚石上可控地生长掺杂有 SiV(-)的金刚石层,随后在其中制造包含高质量 SiV(-)中心的纳米柱阵列。扫描共焦荧光测量显示,所有制造的结构在室温下和低温(5 K)下都具有光学活性的 SiV(-)线,特别是所有金刚石纳米柱阵列的 SiV(-)线具有非常窄的线宽和小的非均匀展宽,这是量子计算的关键要求。在低温(5 K)下,我们在这些结构中观察到与块状金刚石中的 SiV(-)中心典型特征一致的双 λ,这与 SiV(-)中心一致。这些结果表明,可以通过合成方法将高质量的色心掺入纳米光子结构中,其性质与块状金刚石等效,从而为经典和量子信息处理应用开辟了机会。
Micromachines (Basel). 2018-6-2
Nano Lett. 2023-2-8
Opt Express. 2018-1-8
ACS Mater Au. 2021-10-22
RSC Adv. 2021-3-10
Nanomaterials (Basel). 2021-5-14
Nat Commun. 2019-12-9