Gallagher Colin, Kothakonda Manish, Zhao Qing
Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, USA.
Phys Chem Chem Phys. 2025 Mar 12;27(11):5464-5475. doi: 10.1039/d4cp04212c.
Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol. We observe that the rigidities of these SACs depend on the type of dopants, with 3p-coordinating SACs exhibiting more severe out-of-plane distortion than 2p-coordinating SACs. Using CO adsorption energy as a descriptor for COR reactivity, we narrow down the candidates and identify seven SACs with near-optimal CO binding strength. We then elucidate full reaction mechanisms towards methane and methanol generation on these identified candidates and observe highly dopant-dependent activity and rate-limiting steps, divergent from conventional mechanistic understanding on metallic surfaces, calling into question whether previous design principles established on metals are directly transferrable to SACs. Consequently, we find that zinc embedded in boron-doped graphene (Zn-B-C) is a highly active catalyst for electrochemical COR to C hydrocarbons. Our work reveals the opportunities of tuning SAC reactivity engineering dopants and metals and highlights the importance of re-elucidating COR reaction mechanisms on SACs towards unearthing new design principles for SAC chemistry.
利用多余的可再生电力发现能够有效将二氧化碳(CO)转化为有价值的燃料和原料的电催化剂是一项新兴的碳中性技术。嵌入掺杂石墨烯中的单个金属原子,即单原子催化剂(SAC),对电化学CO还原(COR)为CO具有高活性和选择性,但进一步还原为碳氢化合物具有挑战性。在这里,我们使用密度泛函理论计算,研究了具有各种金属中心(3d过渡金属)和掺杂剂(B、N、O的2p掺杂剂;P、S的3p掺杂剂)的广泛SAC化学空间作为将COR转化为甲烷和甲醇的电催化剂的稳定性和反应活性。我们观察到这些SAC的刚性取决于掺杂剂的类型,与2p配位的SAC相比,3p配位的SAC表现出更严重的面外畸变。使用CO吸附能作为COR反应活性的描述符,我们缩小了候选范围,确定了七个具有接近最佳CO结合强度的SAC。然后,我们阐明了在这些确定的候选物上生成甲烷和甲醇的完整反应机制,并观察到高度依赖掺杂剂的活性和速率限制步骤,这与对金属表面的传统机理理解不同,质疑了先前在金属上建立的设计原则是否可直接转移到SAC上。因此,我们发现嵌入硼掺杂石墨烯(Zn-B-C)中的锌是将电化学COR转化为C碳氢化合物的高活性催化剂。我们的工作揭示了通过工程掺杂剂和金属来调节SAC反应活性的机会,并强调了重新阐明SAC上的COR反应机制对于挖掘SAC化学新设计原则的重要性。