一种用于联合治疗的树枝状药物-药物缀合物自组装缺氧响应超分子纳米颗粒。

A dendritic drug-drug conjugate self-assembled hypoxia-responsive supramolecular nanoparticle for combination therapy.

作者信息

Ling Tianlong, Huang Xiaogang, Xie Yu, Zheng Liangshun, Ding Yue, Du Chang, Chen Jianjun

机构信息

Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.

Department of Gastroenterology, Sijing Hospital, Songjiang District, Shanghai, China.

出版信息

J Mater Chem B. 2025 Feb 5;13(6):1961-1968. doi: 10.1039/d4tb02400a.

Abstract

Hypoxia, a condition that enhances tumor invasiveness and metastasis, poses a significant challenge for diverse cancer therapies. There is a pressing demand for hypoxia-responsive nanoparticles with integrated photodynamic functions in order to address the aforementioned issues and overcome the reduced efficacy caused by tumor hypoxia. Here, we report a hypoxia-responsive supramolecular nanoparticle SN@IR806-CB consisting of a dendritic drug-drug conjugate (IR806-Azo-CB) and anionic water-soluble [2]biphenyl-extended-pillar[6]arene modified with eight ammonium salt ions (AWBpP6) the synergy of π-π stacking interaction, host-guest complexation, and hydrophobic interactions for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; , PTT-PDT-CT). Under near-infrared (NIR) irradiation, the IR806-based PTT and PDT could generate hyperthermia to thermally ablate tumor tissue and deplete oxygen to generate singlet oxygen (O), respectively. The resulting hypoxia exacerbation further accelerated the release of activated CB. Consequently, this nanoparticle could be a potential candidate for achieving significant therapeutic efficacy through PTT-PDT-CT.

摘要

缺氧是一种会增强肿瘤侵袭性和转移能力的病症,对多种癌症治疗构成重大挑战。为了解决上述问题并克服肿瘤缺氧导致的疗效降低,对具有集成光动力功能的缺氧响应性纳米颗粒存在迫切需求。在此,我们报告了一种缺氧响应性超分子纳米颗粒SN@IR806-CB,它由树枝状药物-药物共轭物(IR806-Azo-CB)和用八个铵盐离子修饰的阴离子水溶性[2]联苯扩展柱[6]芳烃(AWBpP6)组成,通过π-π堆积相互作用、主客体络合和疏水相互作用协同实现光热疗法(PTT)、光动力疗法(PDT)和化疗(CT;即PTT-PDT-CT)。在近红外(NIR)照射下,基于IR806的PTT和PDT可分别产生热疗以热消融肿瘤组织和消耗氧气以产生单线态氧(O)。由此导致的缺氧加剧进一步加速了活化的CB的释放。因此,这种纳米颗粒可能是通过PTT-PDT-CT实现显著治疗效果的潜在候选物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索