Wang Linfang, Yi Shuanglong, Zhang Shiping, Tsai Yu-Ting, Cheng Yi-Hsuan, Lin Yu-Tung, Lin Chia-Ching, Lee Yi-Hua, Wang Honglei, Ho Margaret S
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
The Institute of Seed Industry, Xianghu Laboratory, Qiantang River International Innovation Belt of the Xiaoshan Economic and Technological Development Zone, Hangzhou, China.
ASN Neuro. 2025;17(1):2443442. doi: 10.1080/17590914.2024.2443442. Epub 2025 Jan 14.
We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia. Whereas the expression of the non-phosphorylatable Atg9 variants suppresses the lack of dAux-induced increase in both autophagosome formation and Atg9 trafficking to autophagosome, the expression of the phosphomimetic Atg9 variants restores the lack of Atg1-induced decrease in both events. In relation to pathophysiology, Atg9 phosphorylation at T62 and T69 contributes to dopaminergic neurodegeneration and locomotor dysfunction in a PD model. Notably, increased expression of the master autophagy regulator Atg1 promotes dAux-Atg9 interaction. Thus, we have identified a dAux-Atg1-Atg9 axis relaying signals through the Atg9 phosphorylation at T62 and T69; these findings further elaborate the mechanism of dAux regulating glial autophagy and highlight the significance of protein degradation pathway in glia contributing to PD.
我们之前发现,细胞周期蛋白G相关激酶的果蝇同源物dAuxilin(dAux)在神经胶质细胞自噬中发挥作用,这与帕金森病(PD)有关。为了进一步剖析其机制,我们在此提供证据表明,神经胶质细胞中缺乏dAux会增强自噬相关蛋白Atg9在两个新发现的苏氨酸残基T62和T69处的磷酸化。在缺乏dAux的情况下,Atg9磷酸化增强会促进自噬体形成以及Atg9转运至神经胶质细胞中的自噬体。而非磷酸化的Atg9变体的表达会抑制因缺乏dAux而导致的自噬体形成增加以及Atg9转运至自噬体的现象,模拟磷酸化的Atg9变体的表达则会恢复因缺乏Atg1而导致的这两种现象的减少。在病理生理学方面,T62和T69处的Atg9磷酸化会导致PD模型中的多巴胺能神经变性和运动功能障碍。值得注意的是,自噬主要调节因子Atg1的表达增加会促进dAux与Atg9的相互作用。因此,我们确定了一个dAux-Atg1-Atg9轴,该轴通过T62和T69处的Atg9磷酸化传递信号;这些发现进一步阐述了dAux调节神经胶质细胞自噬的机制,并突出了神经胶质细胞中蛋白质降解途径对PD的重要性。