Suppr超能文献

利用卷积神经网络(CNN)进行果园灌溉决策。

Utilizing convolutional neural network (CNN) for orchard irrigation decision-making.

作者信息

Okayama Atsushi, Yamamoto Atsushi, Kimura Masaomi, Matsuno Yutaka

机构信息

Department of Environmental Management, Graduate School of Agriculture, Kindai University, Nara, Japan.

Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan.

出版信息

Environ Monit Assess. 2025 Jan 14;197(2):168. doi: 10.1007/s10661-024-13602-1.

Abstract

Efficient agricultural management often relies on farmers' experiential knowledge and demands considerable labor, particularly in regions with challenging terrains. To reduce these burdens, the adoption of smart technologies has garnered increasing attention. This study proposes a convolutional neural network (CNN)-based model as a decision-support tool for smart irrigation in orchard systems, focusing on persimmon cultivation in mountainous regions. Soil moisture data and corresponding leaf RGB images were collected over two growing seasons to train, test, and validate the CNN model for determining optimal irrigation timing. The model achieved over 80% accuracy in identifying water stress levels in persimmon trees based on leaf images. These findings indicate the potential of the developed model as a key component of a remote irrigation system. However, the model's performance limitations and challenges in adapting to diverse field conditions underscore the need for further research to enhance its robustness and applicability.

摘要

高效的农业管理通常依赖于农民的经验知识,并且需要大量劳动力,特别是在地形复杂的地区。为了减轻这些负担,智能技术的采用越来越受到关注。本研究提出了一种基于卷积神经网络(CNN)的模型,作为果园系统智能灌溉的决策支持工具,重点关注山区的柿子种植。在两个生长季节收集了土壤湿度数据和相应的叶片RGB图像,用于训练、测试和验证用于确定最佳灌溉时间的CNN模型。该模型基于叶片图像识别柿树水分胁迫水平的准确率超过80%。这些发现表明所开发的模型作为远程灌溉系统关键组件的潜力。然而,该模型的性能局限性以及在适应不同田间条件方面的挑战凸显了进一步研究以提高其鲁棒性和适用性的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7400/11732880/b69f0ecf810f/10661_2024_13602_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验