Department of Civil Engineering, Shiv Nadar Institution of Eminence, Greater Noida, UP, India.
Environ Monit Assess. 2024 Sep 23;196(10):970. doi: 10.1007/s10661-024-13113-z.
The Crop Water Stress Index (CWSI), a pivotal indicator derived from canopy temperature, plays a crucial role in irrigation scheduling for water conservation in agriculture. This study focuses on determining CWSI (by empirical method) for wheat crops in the semi-arid region of western Uttar Pradesh, India, subjected to varying irrigation treatments across two cropping seasons (2021-2022 and 2022-2023). The aim is to investigate further the potential of four machine learning (ML) models-support vector regression (SVR), random forest regression (RFR), artificial neural network (ANN), and multiple linear regression (MLR) to predict CWSI. The ML models were assessed based on determination coefficient (R), mean absolute error (MAE), and root mean square error (RMSE) under diverse scenarios created from eight distinct input combinations of six variables: air temperature (T), canopy temperature (T), vapor pressure deficit (VPD), net solar radiation (R), wind speed (U), and soil moisture depletion (SD). SVR emerges as the top-performing model, showcasing superior results over ANN, RFR, and MLR. The most effective input combination for SVR includes T, T, VPD, R, and U (R = 0.997, MAE = 0.901%, RMSE = 2.223%). Meanwhile, both ANN and MLR achieve optimal results with input combinations involving T, T, VPD, R, U, and SD (R = 0.992, MAE = 2.031%, RMSE = 3.705%; R = 0.759, MAE = 13.95%, RMSE = 19.98%, respectively). For RFR, the ideal input combination comprises T, T, VPD, and U (R = 0.951, MAE = 5.023%, RMSE = 9.012%). The study highlights the considerable promise of ML models in predicting CWSI, proposing their future application in integration into an irrigation decision support system (IDSS) for crop stress mitigation and efficient water management in agriculture.
作物水分胁迫指数(Crop Water Stress Index,CWSI)是一种源自冠层温度的关键指标,在农业节水灌溉管理中起着至关重要的作用。本研究旨在确定印度北方邦西部半干旱地区的冬小麦作物的 CWSI(通过经验方法),该地区在两个种植季节(2021-2022 年和 2022-2023 年)中接受不同的灌溉处理。目的是进一步研究四种机器学习(Machine Learning,ML)模型-支持向量回归(Support Vector Regression,SVR)、随机森林回归(Random Forest Regression,RFR)、人工神经网络(Artificial Neural Network,ANN)和多元线性回归(Multiple Linear Regression,MLR)预测 CWSI 的潜力。根据在八个不同输入组合的六种变量(空气温度 T、冠层温度 T、蒸气压亏缺 VPD、净太阳辐射 R、风速 U 和土壤水分亏缺 SD)下创建的不同场景,通过决定系数(R)、平均绝对误差(Mean Absolute Error,MAE)和均方根误差(Root Mean Square Error,RMSE)来评估 ML 模型。SVR 是表现最佳的模型,其表现优于 ANN、RFR 和 MLR。SVR 的最佳输入组合包括 T、T、VPD、R 和 U(R=0.997,MAE=0.901%,RMSE=2.223%)。同时,ANN 和 MLR 都能在包含 T、T、VPD、R、U 和 SD 的输入组合下取得最佳效果(R=0.992,MAE=2.031%,RMSE=3.705%;R=0.759,MAE=13.95%,RMSE=19.98%)。对于 RFR,理想的输入组合包括 T、T、VPD 和 U(R=0.951,MAE=5.023%,RMSE=9.012%)。本研究强调了 ML 模型在预测 CWSI 方面的巨大潜力,提出了在集成到作物胁迫缓解和农业高效水管理的灌溉决策支持系统(Irrigation Decision Support System,IDSS)中的未来应用。