Kuwik Jordan, Scott Valerie, Chedid Sara, Stransky Stephanie, Hinkelman Kathryn, Kavoosi Sam, Calderon Michael, Watkins Simon, Sidoli Simone, Islam Kabirul
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States.
J Am Chem Soc. 2025 Jan 29;147(4):3341-3352. doi: 10.1021/jacs.4c13870. Epub 2025 Jan 14.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting. Herein, we identify analogue-sensitive () mutants of the KDM4 subfamily to elucidate member-specific biological functions in a temporally defined manner. By replacing the highly conserved phenylalanine residue in the active site of KDM4 members with alanine, we develop mutants with intact catalytic activity and substrate specificity indistinguishable from those of the wild type congener. Unlike the wild type demethylases, mutants were sensitized toward cofactor-competitive N-oxalyl glycine (NOG) analogues carrying complementary steric appendage. Particularly notable is N-oxalyl leucine (NOL) which inhibited the KDM4 mutants reversibly with submicromolar efficacy. Cell-permeable NOL prodrugs inhibited enzymes in cultured human cells to modulate lysine methylation on nucleosomal histones. Through conditional perturbation of the orthogonal enzymes, we uncover a KDM4A-specific role in ribosomal protein synthesis and map a remarkably dynamic signaling cascade involving locus-specific histone demethylation leading to fast rRNA expression, enhanced ribosome assembly, and protein synthesis. The results provide a mechanistic clue into KDM4A's role in cancers that rely on heightened ribosomal activity to support uncontrolled cellular proliferation.
赖氨酸去甲基化酶(KDMs)利用地球上储量丰富的铁和代谢物2-氧代戊二酸(2OG)催化从组蛋白中氧化去除甲基。KDMs已成为真核基因表达的主要调节因子,并且是新型药物靶点;KDMs的小分子抑制剂正处于治疗人类癌症的临床研发阶段。然而,对人类KDMs功能异质性的机制认识有限,因此需要开发用于精准靶向的化学探针。在此,我们鉴定了KDM4亚家族的类似物敏感()突变体,以便以时间定义的方式阐明成员特异性的生物学功能。通过用丙氨酸取代KDM4成员活性位点中高度保守的苯丙氨酸残基,我们开发出了催化活性和底物特异性与野生型同类物无异的突变体。与野生型去甲基化酶不同,突变体对携带互补空间附属物的辅因子竞争性N-草酰甘氨酸(NOG)类似物敏感。特别值得注意的是N-草酰亮氨酸(NOL),它以亚微摩尔的效力可逆地抑制KDM4突变体。细胞可渗透的NOL前药在培养的人类细胞中抑制酶,以调节核小体组蛋白上的赖氨酸甲基化。通过对正交酶的条件性扰动,我们揭示了KDM4A在核糖体蛋白合成中的特定作用,并绘制了一个显著动态的信号级联反应,该反应涉及位点特异性组蛋白去甲基化,导致快速的rRNA表达、增强的核糖体组装和蛋白质合成。这些结果为KDM4A在依赖增强的核糖体活性来支持不受控制的细胞增殖的癌症中的作用提供了一个机制线索。