Suppr超能文献

将直觉模糊和多准则决策方法整合用于智能工厂的可持续能源管理

Integrating intuitionistic fuzzy and MCDM methods for sustainable energy management in smart factories.

作者信息

Anjum Mohd, Kraiem Naoufel, Min Hong, Daradkeh Yousef Ibrahim, Dutta Ashit Kumar, Shahab Sana

机构信息

Department of Computer Engineering, Aligarh Muslim University, Aligarh, India.

College of Computer Science, King Khalid University, Abha, Saudi Arabia.

出版信息

PLoS One. 2025 Jan 14;20(1):e0315251. doi: 10.1371/journal.pone.0315251. eCollection 2025.

Abstract

Improving energy efficiency is crucial for smart factories that want to meet sustainability goals and operational excellence. This study introduces a novel decision-making framework to optimize energy efficiency in smart manufacturing environments, integrating Intuitionistic Fuzzy Sets (IFS) with Multi-Criteria Decision-Making (MCDM) techniques. The proposed approach addresses key challenges, including reducing carbon footprints, managing operating costs, and adhering to stringent environmental standards. Eight essential criteria are identified, such as the use of renewable energy, the efficiency of production, and the health and safety of workers, to evaluate energy performance. Using the entropy method for criterion weighting and the CRADIS technique for alternative ranking, we prioritize a range of energy-efficient solutions. The novelty of our approach lies in its comprehensive assessment of complex real-world energy management scenarios within smart factories, offering a robust and adaptable decision-support tool. Our empirical results, validated through sensitivity analysis, show that alternative 5 delivers the most significant improvement in energy efficiency. This study provides valuable information for industry practitioners seeking to transition to more sustainable production methods and supports the broader sustainability agenda.

摘要

提高能源效率对于希望实现可持续发展目标并追求卓越运营的智能工厂至关重要。本研究引入了一种新颖的决策框架,以优化智能制造环境中的能源效率,将直觉模糊集(IFS)与多准则决策(MCDM)技术相结合。所提出的方法解决了关键挑战,包括减少碳足迹、管理运营成本以及遵守严格的环境标准。确定了八个基本标准,如可再生能源的使用、生产效率以及工人的健康与安全,以评估能源绩效。使用熵权法进行准则加权,并使用CRADIS技术进行方案排序,我们对一系列节能解决方案进行了优先级排序。我们方法的新颖之处在于对智能工厂内复杂的现实世界能源管理场景进行全面评估,提供了一个强大且适应性强的决策支持工具。通过敏感性分析验证的实证结果表明,方案5在能源效率方面实现了最显著的提升。本研究为寻求向更可持续生产方法转型的行业从业者提供了有价值的信息,并支持了更广泛的可持续发展议程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad7e/11731744/21e4661f84cb/pone.0315251.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验