Arora Aditi, Kumar Sumit, Sapra Shivani, Deo Gautam, Tiwari Mrityunjay K, Singh Brajendra K, Kumar Sandeep
Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
Department of Chemistry, University of Delhi, Delhi, 110007, India.
Carbohydr Res. 2025 Mar;549:109380. doi: 10.1016/j.carres.2025.109380. Epub 2025 Jan 10.
Nickel, an essential transition metal, plays a vital role in biological systems and industries. However, exposure to nickel can cause severe health issues, such as asthma, dermatitis, pneumonitis, neurological disorders, and cancers of the nasal cavity and lungs. Due to nickel's toxicity and extensive industrial use, efficient sensors for detecting Ni ions in environmental and biological contexts are essential. Carbohydrates, with their inherent water solubility and biocompatibility, are ideal for constructing chemosensors. Incorporating a pyridyl group enhances the selectivity and sensitivity of these sensors. We present a carbohydrate-derived colorimetric chemosensor 5-(2'-Pyridoylethene-1'-yl)-4-(2''-phenylethene-1''-yl)-2,3-O-isopropylidene-2,3-dihydrofuran-2,3-diol (7a) that exhibits a distinct colour change and significant fluorescence quenching upon binding with Ni ions. The synthesis of receptor (7a) was validated by using H, C NMR, HRMS, and single crystal X-ray analysis. Detection limit of receptor (7a) for Ni was calculated to be 0.97 μM, which is below the standard (1.2 μM) set by the United States Environmental Protection Agency (EPA). The binding ratio of receptor (7a) to Ni was determined to be 1:1 by using Job's plot. The binding constant of receptor (7a) and Ni was calculated as 4.38 × 10 M by using the Benesi-Hildebrand equation. This sensor demonstrates exceptional selectivity for Ni ions over other metal cations. Receptor (7a) is stable and can be used to detect Ni in the range of pH from 6 to 10. The sensor responded to Ni ions selectively and a large number of coexisting ions showed almost no obvious interference with the detection. Our findings shed light on the potential of carbohydrate-derived chemosensors for nickel detection, paving the way for further exploration in this field. The binding mechanism of receptor (7a) to Ni ions was proposed by Job's plot, UV-vis spectra and DFT (Density Functional Theory) calculations.
镍作为一种必需的过渡金属,在生物系统和工业中发挥着至关重要的作用。然而,接触镍会导致严重的健康问题,如哮喘、皮炎、肺炎、神经紊乱以及鼻腔和肺部癌症。由于镍的毒性及其在工业中的广泛应用,在环境和生物环境中检测镍离子的高效传感器至关重要。碳水化合物因其固有的水溶性和生物相容性,是构建化学传感器的理想选择。引入吡啶基团可提高这些传感器的选择性和灵敏度。我们展示了一种碳水化合物衍生的比色化学传感器5-(2'-吡啶基乙烯-1'-基)-4-(2''-苯基乙烯-1''-基)-2,3-O-异丙叉基-2,3-二氢呋喃-2,3-二醇(7a),它在与镍离子结合时表现出明显的颜色变化和显著的荧光猝灭。受体(7a)的合成通过氢、碳核磁共振、高分辨质谱和单晶X射线分析得到验证。受体(7a)对镍的检测限经计算为0.97 μM,低于美国环境保护局(EPA)设定的标准(1.2 μM)。通过Job曲线确定受体(7a)与镍的结合比为1:1。利用Benesi-Hildebrand方程计算出受体(7a)与镍的结合常数为4.38×10 M。该传感器对镍离子表现出优于其他金属阳离子的卓越选择性。受体(7a)稳定,可用于在pH值为6至10的范围内检测镍。该传感器对镍离子有选择性响应,大量共存离子对检测几乎没有明显干扰。我们的研究结果揭示了碳水化合物衍生的化学传感器用于镍检测的潜力,为该领域的进一步探索铺平了道路。通过Job曲线、紫外可见光谱和密度泛函理论(DFT)计算提出了受体(7a)与镍离子的结合机制。