Kurita S, Miyoshi Y, Saito S, Kasahara S, Katoh Y, Matsuda S, Yokota S, Kasahara Y, Matsuoka A, Hori T, Keika K, Teramoto M, Shinohara I
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan.
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601, Japan.
Sci Rep. 2025 Jan 14;15(1):992. doi: 10.1038/s41598-024-80693-8.
Electromagnetic whistler-mode chorus waves are a key driver of variations in energetic electron fluxes in the Earth's magnetosphere through the wave-particle interaction. Traditionally understood as a diffusive process, these interactions account for long-term electron flux variations (> several minutes). However, theories suggest that chorus waves can also cause rapid (< 1 s) electron acceleration and significant flux variations within less than a second through a nonlinear wave-particle interaction. Detecting these rapid accelerations has been a great challenge due to a limited time resolution of conventional particle instruments. Here, we employ an analysis technique to enhance the time resolution of the particle measurements, revealing rapid electron flux variations within less than one second associated with chorus waves. This technique exposes short-lived flux increases significantly larger than those observable with the standard time resolution. Our findings indicate that these transient flux variations result from the nonlinear acceleration of electrons induced by the chorus waves, highlighting the importance of nonlinear wave-particle interactions in creating high energy electrons in the Earth's magnetosphere. The same acceleration mechanism should operate in the magnetospheres of Jupiter and Saturn where chorus waves are present, and in laboratory plasma environments when chorus-like waves are excited.
电磁哨声波是通过波粒相互作用导致地球磁层中高能电子通量变化的关键驱动因素。传统上认为这些相互作用是一个扩散过程,可解释长期的电子通量变化(>几分钟)。然而,理论表明,哨声波还可通过非线性波粒相互作用在不到一秒的时间内引起快速(<1秒)的电子加速和显著的通量变化。由于传统粒子仪器的时间分辨率有限,检测这些快速加速一直是一项巨大挑战。在此,我们采用一种分析技术来提高粒子测量的时间分辨率,揭示与哨声波相关的不到一秒内的快速电子通量变化。该技术揭示出的短暂通量增加明显大于标准时间分辨率下可观测到的通量增加。我们的研究结果表明,这些瞬态通量变化是由哨声波引起的电子非线性加速导致的,突出了非线性波粒相互作用在地球磁层中产生高能电子方面的重要性。相同的加速机制应在存在哨声波的木星和土星磁层中起作用,以及在实验室等离子体环境中激发类似哨声波时起作用。