Suppr超能文献

使用非光学运动跟踪技术在手术中应用机器学习的系统评价。

Systematic review of machine learning applications using nonoptical motion tracking in surgery.

作者信息

Carciumaru Teona Z, Tang Cadey M, Farsi Mohsen, Bramer Wichor M, Dankelman Jenny, Raman Chirag, Dirven Clemens M F, Gholinejad Maryam, Vasilic Dalibor

机构信息

Department of Plastic and Reconstructive Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands.

Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands.

出版信息

NPJ Digit Med. 2025 Jan 14;8(1):28. doi: 10.1038/s41746-024-01412-1.

Abstract

This systematic review explores machine learning (ML) applications in surgical motion analysis using non-optical motion tracking systems (NOMTS), alone or with optical methods. It investigates objectives, experimental designs, model effectiveness, and future research directions. From 3632 records, 84 studies were included, with Artificial Neural Networks (38%) and Support Vector Machines (11%) being the most common ML models. Skill assessment was the primary objective (38%). NOMTS used included internal device kinematics (56%), electromagnetic (17%), inertial (15%), mechanical (11%), and electromyography (1%) sensors. Surgical settings were robotic (60%), laparoscopic (18%), open (16%), and others (6%). Procedures focused on bench-top tasks (67%), clinical models (17%), clinical simulations (9%), and non-clinical simulations (7%). Over 90% accuracy was achieved in 36% of studies. Literature shows NOMTS and ML can enhance surgical precision, assessment, and training. Future research should advance ML in surgical environments, ensure model interpretability and reproducibility, and use larger datasets for accurate evaluation.

摘要

本系统评价探讨了机器学习(ML)在使用非光学运动跟踪系统(NOMTS)单独或与光学方法结合进行手术运动分析中的应用。它研究了目标、实验设计、模型有效性和未来研究方向。从3632条记录中,纳入了84项研究,其中人工神经网络(38%)和支持向量机(11%)是最常见的ML模型。技能评估是主要目标(38%)。使用的NOMTS包括内部设备运动学(56%)、电磁(17%)、惯性(15%)、机械(11%)和肌电图(1%)传感器。手术场景包括机器人手术(60%)、腹腔镜手术(18%)、开放手术(16%)和其他(6%)。程序主要集中在台式任务(67%)、临床模型(17%)、临床模拟(9%)和非临床模拟(7%)。36%的研究实现了超过90%的准确率。文献表明,NOMTS和ML可以提高手术精度、评估和训练水平。未来的研究应在手术环境中推进ML,确保模型的可解释性和可重复性,并使用更大的数据集进行准确评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a656/11733004/dbf1581e4893/41746_2024_1412_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验