Carciumaru Teona Z, Tang Cadey M, Farsi Mohsen, Bramer Wichor M, Dankelman Jenny, Raman Chirag, Dirven Clemens M F, Gholinejad Maryam, Vasilic Dalibor
Department of Plastic and Reconstructive Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
NPJ Digit Med. 2025 Jan 14;8(1):28. doi: 10.1038/s41746-024-01412-1.
This systematic review explores machine learning (ML) applications in surgical motion analysis using non-optical motion tracking systems (NOMTS), alone or with optical methods. It investigates objectives, experimental designs, model effectiveness, and future research directions. From 3632 records, 84 studies were included, with Artificial Neural Networks (38%) and Support Vector Machines (11%) being the most common ML models. Skill assessment was the primary objective (38%). NOMTS used included internal device kinematics (56%), electromagnetic (17%), inertial (15%), mechanical (11%), and electromyography (1%) sensors. Surgical settings were robotic (60%), laparoscopic (18%), open (16%), and others (6%). Procedures focused on bench-top tasks (67%), clinical models (17%), clinical simulations (9%), and non-clinical simulations (7%). Over 90% accuracy was achieved in 36% of studies. Literature shows NOMTS and ML can enhance surgical precision, assessment, and training. Future research should advance ML in surgical environments, ensure model interpretability and reproducibility, and use larger datasets for accurate evaluation.
本系统评价探讨了机器学习(ML)在使用非光学运动跟踪系统(NOMTS)单独或与光学方法结合进行手术运动分析中的应用。它研究了目标、实验设计、模型有效性和未来研究方向。从3632条记录中,纳入了84项研究,其中人工神经网络(38%)和支持向量机(11%)是最常见的ML模型。技能评估是主要目标(38%)。使用的NOMTS包括内部设备运动学(56%)、电磁(17%)、惯性(15%)、机械(11%)和肌电图(1%)传感器。手术场景包括机器人手术(60%)、腹腔镜手术(18%)、开放手术(16%)和其他(6%)。程序主要集中在台式任务(67%)、临床模型(17%)、临床模拟(9%)和非临床模拟(7%)。36%的研究实现了超过90%的准确率。文献表明,NOMTS和ML可以提高手术精度、评估和训练水平。未来的研究应在手术环境中推进ML,确保模型的可解释性和可重复性,并使用更大的数据集进行准确评估。