文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从进化角度优化基于二代测序技术对多种肺癌的鉴别诊断

Optimizing the NGS-based discrimination of multiple lung cancers from the perspective of evolution.

作者信息

Wang Ziyang, Yuan Xiaoqiu, Sun Kunkun, Wu Fang, Liu Ke, Jin Yiruo, Chervova Olga, Nie Yuntao, Yang Airong, Jin Yichen, Li Jing, Li Yun, Yang Fan, Wang Jun, Beck Stephan, Carbone David, Jiang Guanchao, Chen Kezhong

机构信息

Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.

Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China.

出版信息

NPJ Precis Oncol. 2025 Jan 14;9(1):14. doi: 10.1038/s41698-024-00786-5.


DOI:10.1038/s41698-024-00786-5
PMID:39809905
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11733135/
Abstract

Next-generation sequencing (NGS) offers a promising approach for differentiating multiple primary lung cancers (MPLC) from intrapulmonary metastasis (IPM), though panel selection and clonal interpretation remain challenging. Whole-exome sequencing (WES) data from 80 lung cancer samples were utilized to simulate MPLC and IPM, with various sequenced panels constructed through gene subsampling. Two clonal interpretation approaches primarily applied in clinical practice, MoleA (based on shared mutation comparison) and MoleB (based on probability calculation), were subsequently evaluated. ROC analysis highlighted MoleB's superior performance, especially with the NCCNplus panel (AUC = 0.950 ± 0.002) and pancancer MoleA (AUC = 0.792 ± 0.004). In two independent cohorts (WES cohort, N = 42 and non-WES cohort, N = 94), NGS-based methodologies effectively stratified disease-free survival, with NCCNplus MoleB further predicting prognosis. Phylogenetic analysis further revealed evolutionary distinctions between MPLC and IPM, establishing an optimized NGS-based framework for differentiating multiple lung cancers.

摘要

下一代测序(NGS)为区分多原发性肺癌(MPLC)和肺内转移(IPM)提供了一种有前景的方法,尽管检测 panel 的选择和克隆解读仍然具有挑战性。利用来自 80 例肺癌样本的全外显子测序(WES)数据来模拟 MPLC 和 IPM,并通过基因二次抽样构建了各种测序 panel。随后评估了两种主要应用于临床实践的克隆解读方法,即 MoleA(基于共享突变比较)和 MoleB(基于概率计算)。ROC 分析突出了 MoleB 的优越性能,特别是对于 NCCNplus panel(AUC = 0.950 ± 0.002)和泛癌 MoleA(AUC = 0.792 ± 0.004)。在两个独立队列(WES 队列,N = 42 和非 WES 队列,N = 94)中,基于 NGS 的方法有效地对无病生存期进行了分层,其中 NCCNplus MoleB 进一步预测了预后。系统发育分析进一步揭示了 MPLC 和 IPM 之间的进化差异,建立了一个优化的基于 NGS 的框架来区分多种肺癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/cfa5fe694265/41698_2024_786_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/46d575b24921/41698_2024_786_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/ce57e7388e51/41698_2024_786_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/bb53b6774c38/41698_2024_786_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/4bfa893af53c/41698_2024_786_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/c108c72e2f2e/41698_2024_786_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/f92861ada5a4/41698_2024_786_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/cfa5fe694265/41698_2024_786_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/46d575b24921/41698_2024_786_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/ce57e7388e51/41698_2024_786_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/bb53b6774c38/41698_2024_786_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/4bfa893af53c/41698_2024_786_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/c108c72e2f2e/41698_2024_786_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/f92861ada5a4/41698_2024_786_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbab/11733135/cfa5fe694265/41698_2024_786_Fig7_HTML.jpg

相似文献

[1]
Optimizing the NGS-based discrimination of multiple lung cancers from the perspective of evolution.

NPJ Precis Oncol. 2025-1-14

[2]
Using molecular characteristics to distinguish multiple primary lung cancers and intrapulmonary metastases.

PeerJ. 2024-1-31

[3]
Establishment of Criteria for Molecular Differential Diagnosis of MPLC and IPM.

Front Oncol. 2021-1-21

[4]
Genetic and immune characteristics of multiple primary lung cancers and lung metastases.

Thorac Cancer. 2021-10

[5]
Next-Generation Sequencing vs. Clinical-Pathological Assessment in Diagnosis of Multiple Lung Cancers: A Systematic Review and Meta-Analysis.

Thorac Cancer. 2025-3

[6]
Integrating NGS-derived mutational profiling in the diagnosis of multiple lung adenocarcinomas.

Cancer Treat Res Commun. 2021

[7]
CXCL1 and CXCL8: Reliable and feasible biomarkers differentiating intrapulmonary metastasis from multiple primary neoplasms in non-small cell lung cancers.

Cancer Biomark. 2025-4

[8]
The Unique Genetic Mutation Characteristics Based on Large Panel Next-Generation Sequencing (NGS) Detection in Multiple Primary Lung Cancers (MPLC) Patients.

Discov Med. 2023-4

[9]
Genomic and transcriptomic significance of multiple primary lung cancers detected by next-generation sequencing in clinical settings.

Carcinogenesis. 2024-6-10

[10]
Genetic features and application value of next generation sequencing in the diagnosis of synchronous multifocal lung adenocarcinoma.

Oncol Lett. 2020-9

本文引用的文献

[1]
Towards the molecular era of discriminating multiple lung cancers.

EBioMedicine. 2023-4

[2]
A novel NGS-based diagnostic algorithm for classifying multifocal lung adenocarcinomas in pN0M0 patients.

J Pathol Clin Res. 2023-3

[3]
Spatiotemporal genomic analysis reveals distinct molecular features in recurrent stage I non-small cell lung cancers.

Cell Rep. 2022-7-12

[4]
Differential Diagnostic Value of Histology in MPLC and IPM: A Systematic Review and Meta-Analysis.

Front Oncol. 2022-4-29

[5]
Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology.

J Natl Compr Canc Netw. 2022-5

[6]
Inferring ongoing cancer evolution from single tumour biopsies using synthetic supervised learning.

PLoS Comput Biol. 2022-4

[7]
Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth.

Nat Biomed Eng. 2022-3

[8]
Evaluating statistical approaches to define clonal origin of tumours using bulk DNA sequencing: context is everything.

Genome Biol. 2022-2-2

[9]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[10]
Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data.

Genome Biol. 2022-1-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索