Ontario Institute for Cancer Research, Department of Computational Biology, Toronto, Ontario, Canada.
Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
PLoS Comput Biol. 2022 Apr 28;18(4):e1010007. doi: 10.1371/journal.pcbi.1010007. eCollection 2022 Apr.
Variant allele frequencies (VAF) encode ongoing evolution and subclonal selection in growing tumours. However, existing methods that utilize VAF information for cancer evolutionary inference are compressive, slow, or incorrectly specify the underlying cancer evolutionary dynamics. Here, we provide a proof-of-principle synthetic supervised learning method, TumE, that integrates simulated models of cancer evolution with Bayesian neural networks, to infer ongoing selection in bulk-sequenced single tumour biopsies. Analyses in synthetic and patient tumours show that TumE significantly improves both accuracy and inference time per sample when detecting positive selection, deconvoluting selected subclonal populations, and estimating subclone frequency. Importantly, we show how transfer learning can leverage stored knowledge within TumE models for related evolutionary inference tasks-substantially reducing data and computational time for further model development and providing a library of recyclable deep learning models for the cancer evolution community. This extensible framework provides a foundation and future directions for harnessing progressive computational methods for the benefit of cancer genomics and, in turn, the cancer patient.
变异等位基因频率(VAF)编码了不断进化和亚克隆选择在生长中的肿瘤中。然而,现有的利用 VAF 信息进行癌症进化推断的方法具有压缩性、速度慢或不正确指定潜在的癌症进化动态。在这里,我们提供了一个原理验证的合成监督学习方法 TumE,它将癌症进化的模拟模型与贝叶斯神经网络集成在一起,以推断批量测序的单个肿瘤活检中的持续选择。在合成和患者肿瘤中的分析表明,当检测到阳性选择、去卷积选择的亚克隆群体和估计亚克隆频率时,TumE 显著提高了准确性和每个样本的推断时间。重要的是,我们展示了迁移学习如何利用 TumE 模型中的存储知识来进行相关的进化推断任务,从而大大减少了进一步模型开发的数据和计算时间,并为癌症进化社区提供了可回收的深度学习模型库。这个可扩展的框架为利用渐进式计算方法造福癌症基因组学提供了基础和未来方向,进而造福癌症患者。