Harvey Calum, Nowak Alicja, Zhang Sai, Moll Tobias, Weimer Annika K, Barcons Aina Mogas, Souza Cleide Dos Santos, Ferraiuolo Laura, Kenna Kevin, Zaitlen Noah, Caggiano Christa, Shaw Pamela J, Snyder Michael P, Mill Jonathan, Hannon Eilis, Cooper-Knock Johnathan
Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
Department of Epidemiology, University of Florida, Gainesville, FL, USA.
BMC Med Genomics. 2025 Jan 14;18(1):10. doi: 10.1186/s12920-025-02084-w.
Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals. By comparing MN methylation with an atlas of tissue methylation we have derived a MN-specific signature of hypomethylated genomic regions, which accords with genes important for MN function. Through simulation we have optimised the selection of regions for biomarker detection in plasma and CSF cell-free DNA (cfDNA). However, we show that MN-derived DNA is not detectable via WGBS in plasma cfDNA. In support of our experimental finding, we show theoretically that the relative sparsity of lower MN sets a limit on the proportion of plasma cfDNA derived from MN which is below the threshold for detection via WGBS. Our findings are important for the ongoing development of ALS biomarkers. The MN-specific hypomethylated genomic regions we have derived could be usefully combined with more sensitive detection methods and perhaps with study of CSF instead of plasma. Indeed we demonstrate that neuronal-derived DNA is detectable in CSF. Our work is relevant for all diseases featuring death of rare cell-types.
肌萎缩侧索硬化症(ALS)缺乏特异性生物标志物,但以对运动神经元(MN)具有相对选择性毒性为特征。正如其他人所强调的,这为基于检测可获取生物流体中垂死MN释放的DNA来开发敏感且特异的生物标志物提供了机会。在此,我们对来自神经功能正常个体的诱导多能干细胞衍生的MN进行了全基因组亚硫酸氢盐测序(WGBS)。通过将MN甲基化与组织甲基化图谱进行比较,我们得出了低甲基化基因组区域的MN特异性特征,这与对MN功能重要的基因相符。通过模拟,我们优化了血浆和脑脊液游离DNA(cfDNA)中生物标志物检测区域的选择。然而,我们发现通过WGBS在血浆cfDNA中无法检测到MN衍生的DNA。为支持我们的实验发现,我们从理论上表明,较低MN的相对稀少性限制了血浆cfDNA中源自MN的比例,该比例低于通过WGBS检测的阈值。我们的发现对ALS生物标志物的持续开发具有重要意义。我们得出的MN特异性低甲基化基因组区域可与更敏感的检测方法有效结合,或许还可与脑脊液而非血浆的研究相结合。实际上,我们证明在脑脊液中可检测到神经元衍生的DNA。我们的工作与所有以罕见细胞类型死亡为特征的疾病相关。