Suppr超能文献

基于质谱的宏蛋白质组学进行临床微生物组分析

Clinical Microbiome Analysis by Mass Spectrometry-Based Metaproteomics.

作者信息

Zhang Xu, Ning Zhibin, Mayne Janice, Figeys Daniel

机构信息

Regulatory Research Division, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.

School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; email:

出版信息

Annu Rev Anal Chem (Palo Alto Calif). 2025 May;18(1):149-172. doi: 10.1146/annurev-anchem-071124-113819. Epub 2025 Jan 15.

Abstract

Mass spectrometry-based proteomics and metaproteomics have long been used in the study of human microbiomes, with the potential of metaproteomics only recently being fully harnessed. This progress is due to the advancements of high-performance mass spectrometers, innovative proteomics strategies, and the development of dedicated bioinformatics tools. In this review, we critically examine the recent technological developments that enhance the application of metaproteomics in clinical microbiome analysis. We also summarize significant advancements in the application of metaproteomics to study human microbiomes across various body sites under disease conditions. Despite these, the potential of metaproteomics remains underutilized due to typically small sample sizes and insufficient data mining. We thereby highlight some key aspects that could facilitate the broader and more effective application of mass spectrometry-based metaproteomics in clinical microbiome analysis, including the development of microbiome assays for translational research and application.

摘要

基于质谱的蛋白质组学和宏蛋白质组学长期以来一直用于人类微生物组的研究,宏蛋白质组学的潜力直到最近才得到充分利用。这一进展得益于高性能质谱仪的进步、创新的蛋白质组学策略以及专用生物信息学工具的开发。在本综述中,我们批判性地审视了近期的技术发展,这些发展增强了宏蛋白质组学在临床微生物组分析中的应用。我们还总结了宏蛋白质组学在疾病条件下研究人体各个部位微生物组方面的重大进展。尽管如此,由于样本量通常较小且数据挖掘不足,宏蛋白质组学的潜力仍未得到充分利用。因此,我们强调了一些关键方面,这些方面可以促进基于质谱的宏蛋白质组学在临床微生物组分析中更广泛、更有效地应用,包括开发用于转化研究和应用的微生物组检测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验