Suppr超能文献

数据非依赖型采集质谱技术作为宏蛋白质组学的工具:使用模型微生物群落进行实验室间比较

Data-Independent Acquisition Mass Spectrometry as a Tool for Metaproteomics: Interlaboratory Comparison Using a Model Microbiome.

作者信息

Rajczewski Andrew T, Blakeley-Ruiz J Alfredo, Meyer Annaliese, Vintila Simina, McIlvin Matthew R, Van Den Bossche Tim, Searle Brian C, Griffin Timothy J, Saito Mak A, Kleiner Manuel, Jagtap Pratik D

机构信息

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.

Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.

出版信息

Proteomics. 2025 May;25(9-10):e202400187. doi: 10.1002/pmic.202400187. Epub 2025 Apr 10.

Abstract

Mass spectrometry (MS)-based metaproteomics is used to identify and quantify proteins in microbiome samples, with the frequently used methodology being data-dependent acquisition mass spectrometry (DDA-MS). However, DDA-MS is limited in its ability to reproducibly identify and quantify lower abundant peptides and proteins. To address DDA-MS deficiencies, proteomics researchers have started using Data-independent acquisition mass spectrometry (DIA-MS) for reproducible detection and quantification of peptides and proteins. We sought to evaluate the reproducibility and accuracy of DIA-MS metaproteomic measurements relative to DDA-MS using a mock community of known taxonomic composition. Artificial microbial communities of known composition were analyzed independently in three laboratories using DDA- and DIA-MS acquisition methods. In this study, DIA-MS yielded more protein and peptide identifications than DDA-MS in each laboratory for the particular instruments and software parameters chosen. In addition, the protein and peptide identifications were more reproducible in all laboratories and provided an accurate quantification of proteins and taxonomic groups in the samples. We also identified some limitations of current DIA tools when applied to metaproteomic data, highlighting specific needs to improve DIA tools enabling analysis of metaproteomic datasets from complex microbiomes. Ultimately, DIA-MS represents a promising strategy for MS-based metaproteomics due to its large number of detected proteins and peptides, reproducibility, deep sequencing capabilities, and accurate quantitation.

摘要

基于质谱(MS)的宏蛋白质组学用于鉴定和定量微生物组样本中的蛋白质,常用方法是数据依赖型采集质谱(DDA-MS)。然而,DDA-MS在可重复鉴定和定量低丰度肽和蛋白质方面能力有限。为解决DDA-MS的不足,蛋白质组学研究人员已开始使用数据非依赖型采集质谱(DIA-MS)来可重复地检测和定量肽与蛋白质。我们试图使用已知分类组成的模拟群落评估DIA-MS宏蛋白质组测量相对于DDA-MS的可重复性和准确性。使用DDA-和DIA-MS采集方法,在三个实验室独立分析已知组成的人工微生物群落。在本研究中,对于所选择的特定仪器和软件参数,在每个实验室中DIA-MS比DDA-MS鉴定出更多的蛋白质和肽。此外,蛋白质和肽的鉴定在所有实验室中更具可重复性,并能准确量化样本中的蛋白质和分类群。我们还确定了当前DIA工具应用于宏蛋白质组数据时的一些局限性,突出了改进DIA工具以分析来自复杂微生物群落的宏蛋白质组数据集的特定需求。最终,由于其检测到的大量蛋白质和肽、可重复性、深度测序能力以及准确的定量,DIA-MS代表了基于MS的宏蛋白质组学的一种有前景的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验