Suppr超能文献

使用等离子体能量膨胀测温法(PEET)提高透射电子显微镜(TEM)样品温度测量的准确性:解决样品厚度效应问题。

Improving the accuracy of temperature measurement on TEM samples using plasmon energy expansion thermometry (PEET): Addressing sample thickness effects.

作者信息

Yang Yi-Chieh, Serafini Luca, Gauquelin Nicolas, Verbeeck Johan, Jinschek Joerg R

机构信息

National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark (DTU), Kgs. Lyngby, Denmark.

Electron Microscopy for Materials Science (EMAT), University of Antwerp, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium.

出版信息

Ultramicroscopy. 2025 Apr;270:114102. doi: 10.1016/j.ultramic.2025.114102. Epub 2025 Jan 4.

Abstract

Advances in analytical scanning transmission electron microscopy (STEM) and in microelectronic mechanical systems (MEMS) based microheaters have enabled in-situ materials' characterization at the nanometer scale at elevated temperature. In addition to resolving the structural information at elevated temperatures, detailed knowledge of the local temperature distribution inside the sample is essential to reveal thermally induced phenomena and processes. Here, we investigate the accuracy of plasmon energy expansion thermometry (PEET) as a method to map the local temperature in a tungsten (W) lamella in a range between room temperature and 700 °C. In particular, we address the influence of sample thickness in the range of a typical electron-transparent TEM sample (from 30 nm to 70 nm) on the temperature-dependent plasmon energy. The shift in plasmon energy, used to determine the local sample temperature, is not only temperature-dependent, but in case of W also seems thickness-dependent in sample thicknesses below approximately 60 nm. It is believed that the underlying reason is the high susceptibility of the regions with thinner sample thickness to strain from residual load induced during FIB deposition, together with increased thermal expansion in these areas due to their higher surface-to-volume ratio. The results highlight the importance of considering sample thickness (and especially thickness variations) when analyzing the local bulk plasmon energy for temperature measurement using PEET. However, in case of W, an increasing beam broadening (FWHM) of the bulk plasmon peak with decreasing sample thickness can be used to improve the accuracy of PEET in TEM lamellae with varying sample thickness.

摘要

分析扫描透射电子显微镜(STEM)以及基于微电子机械系统(MEMS)的微加热器的进展,使得在高温下能够对纳米尺度的材料进行原位表征。除了解析高温下的结构信息外,详细了解样品内部的局部温度分布对于揭示热诱导现象和过程至关重要。在此,我们研究了等离激元能量扩展测温法(PEET)作为一种在室温至700°C范围内绘制钨(W)薄片局部温度的方法的准确性。特别是,我们探讨了典型电子透明透射电子显微镜样品厚度范围(从30纳米到70纳米)对与温度相关的等离激元能量的影响。用于确定样品局部温度的等离激元能量的变化不仅与温度有关,而且对于钨而言,在样品厚度低于约60纳米的情况下,似乎还与厚度有关。据信,其根本原因是样品厚度较薄的区域对聚焦离子束沉积过程中产生的残余载荷引起的应变高度敏感,同时由于它们较高的表面积与体积比,这些区域的热膨胀增加。结果突出了在使用PEET分析用于温度测量的局部体等离激元能量时考虑样品厚度(尤其是厚度变化)的重要性。然而,对于钨而言,随着样品厚度减小,体等离激元峰的半高宽(FWHM)增加,这可用于提高在具有不同样品厚度的透射电子显微镜薄片中PEET的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验