Ren Yudong, Ye Kangpeng, Chen Qiaolu, Chen Fujia, Zhang Li, Pan Yuang, Li Wenhao, Li Xinrui, Zhang Lu, Chen Hongsheng, Yang Yihao
State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China.
Nat Commun. 2025 Jan 15;16(1):707. doi: 10.1038/s41467-025-56021-7.
Topological phases have prevailed across diverse disciplines, spanning electronics, photonics, and acoustics. Hitherto, the understanding of these phases has centred on energy (frequency) bandstructures, showcasing topological boundary states at spatial interfaces. Recent strides have uncovered a unique category of bandstructures characterised by gaps in momentum, referred to as momentum bandgaps or k gaps, notably driven by breakthroughs in photonic time crystals. This discovery hints at abundant topological phases defined within momentum bands, alongside a wealth of topological boundary states in the time domain. Here, we report the experimental observation of k-gap topology in a large-scale optical temporal synthetic lattice, manifesting as temporal topological boundary states. These boundary states are uniquely situated at temporal interfaces between two subsystems with distinct k-gap topology. Counterintuitively, despite the exponential amplification of k-gap modes within both subsystems, these topological boundary states exhibit decay in both temporal directions [i.e., with energy growing (decaying) before (after) the temporal interfaces]. Our findings mark a significant pathway for delving into k gaps, temporal topological states, and time-varying physics.
拓扑相已在包括电子学、光子学和声学在内的多种学科中广泛存在。迄今为止,对这些相的理解主要集中在能量(频率)能带结构上,在空间界面处展示出拓扑边界态。最近的进展揭示了一类独特的能带结构,其特征是动量上存在间隙,称为动量带隙或k间隙,这主要是由光子时间晶体的突破所驱动的。这一发现暗示了在动量带内定义的丰富拓扑相,以及时域中大量的拓扑边界态。在此,我们报告了在大规模光学时间合成晶格中对k间隙拓扑的实验观测,表现为时间拓扑边界态。这些边界态独特地位于具有不同k间隙拓扑的两个子系统之间的时间界面处。与直觉相反,尽管两个子系统内的k间隙模式都呈指数放大,但这些拓扑边界态在两个时间方向上都表现出衰减[即,在时间界面之前(之后)能量增加(衰减)]。我们的发现为深入研究k间隙、时间拓扑态和时变物理开辟了一条重要途径。