Zeng Guosong, Liu Guiji, Panzeri Gabriele, Kim Chanyeon, Song Chengyu, Alley Olivia J, Bell Alexis T, Weber Adam Z, Toma Francesca M
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
ACS Energy Lett. 2024 Dec 9;10(1):34-39. doi: 10.1021/acsenergylett.4c02259. eCollection 2025 Jan 10.
Light-driven reduction of CO into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO reduction. However, such impact remains poorly understood. Here, we report an electrodeposition-annealing route for tailoring surface composition of ZnTe photocathodes. Our work demonstrates that a Zn-rich surface on the ZnTe photocathode is essential to impact the CO reduction activity and selectivity. In particular, the Zn-rich surface not only facilitated the interfacial charge carrier transfer, but also acted as electrocatalyst for boosting carbon product selectivity and suppressing the hydrogen evolution reaction. This work provides a new avenue to optimize the photocathode, as well as improvement of the CORR performance.
使用光电化学(PEC)方法将二氧化碳光驱动还原为化学品被认为是实现碳中和目标的一种有前途的途径。光电极的最顶层表面以及半导体/电解质界面在决定PEC二氧化碳还原性能方面起着关键作用。然而,这种影响仍知之甚少。在此,我们报道了一种用于定制碲化锌光阴极表面组成的电沉积-退火路线。我们的工作表明,碲化锌光阴极上富含锌的表面对于影响二氧化碳还原活性和选择性至关重要。特别是,富含锌的表面不仅促进了界面电荷载流子转移,还作为电催化剂提高了碳产物选择性并抑制了析氢反应。这项工作为优化光阴极以及提高二氧化碳还原反应(CORR)性能提供了一条新途径。