Meyer-Baese Lisa, Jaeger Dieter, Keilholz Shella
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States.
Department of Biology, Emory University, Atlanta, Georgia, United States.
J Neurophysiol. 2025 Feb 1;133(2):644-660. doi: 10.1152/jn.00418.2024. Epub 2025 Jan 17.
The brain is a complex neural network whose functional dynamics offer valuable insights into behavioral performance and health. Advances in fMRI have provided a unique window into studying human brain networks, providing us with a powerful tool for clinical research. Yet many questions about the underlying correlates between spontaneous fMRI and neural activity remain poorly understood, limiting the impact of this research. Cross-species studies have proven essential in deepening our understanding of how neuronal activity is coupled to increases in local cerebral blood flow, changes in blood oxygenation, and the measured fMRI signal. In this article, we review some fundamental mechanisms implicated in neurovascular coupling. We then examine neurovascular coupling within the context of spontaneous cortical functional networks and their dynamics, summarizing key findings from mechanistic studies in rodents. In doing so, we highlight the nuances of the neurovascular coupling that ultimately influences the interpretation of derived hemodynamic functional networks, their dynamics, and the neural underpinnings they represent.
大脑是一个复杂的神经网络,其功能动态为行为表现和健康提供了有价值的见解。功能磁共振成像(fMRI)的进展为研究人类大脑网络提供了一个独特的窗口,为我们的临床研究提供了一个强大的工具。然而,关于自发fMRI与神经活动之间潜在关联的许多问题仍然知之甚少,这限制了这项研究的影响力。跨物种研究已被证明对于深化我们对神经元活动如何与局部脑血流量增加、血液氧合变化以及测量的fMRI信号相耦合的理解至关重要。在本文中,我们回顾了一些与神经血管耦合相关的基本机制。然后,我们在自发皮质功能网络及其动态的背景下研究神经血管耦合,总结啮齿动物机制研究的主要发现。在此过程中,我们强调了神经血管耦合的细微差别,这些细微差别最终会影响对所推导的血液动力学功能网络、其动态以及它们所代表的神经基础的解释。