Suppr超能文献

用于鉴别儿童慢性肾脏病进展风险的生物标志物组合

Biomarker Panels for Discriminating Risk of CKD Progression in Children.

作者信息

Greenberg Jason H, Abraham Alison G, Xu Yunwen, Schelling Jeffrey R, Coca Steven G, Schrauben Sarah J, Wilson F Perry, Waikar Sushrut S, Vasan Ramachandran S, Gutiérrez Orlando M, Shlipak Michael G, Ix Joachim H, Warady Bradley A, Kimmel Paul L, Bonventre Joseph V, Parikh Chirag R, Denburg Michelle, Furth Susan

机构信息

Section of Nephrology, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut.

Clinical and Translational Research Accelerator, Yale University School of Medicine, New Haven, Connecticut.

出版信息

J Am Soc Nephrol. 2025 Jun 1;36(6):1105-1115. doi: 10.1681/ASN.0000000602. Epub 2025 Jan 16.

Abstract

KEY POINTS

Plasma biomarkers (kidney injury molecule-1, KIM-1), urine biomarkers (EGF/creatinine and urine albumin-creatinine ratio), and eGFR identified four prognostic groups in children with CKD progression. A panel of biomarkers may better capture the complexity of kidney disease in children and may allow for a broader assessment of kidney health.

BACKGROUND

We have previously studied biomarkers of tubular health (EGF), injury (kidney injury molecule-1 [KIM-1]), dysfunction (-1 microglobulin), and inflammation (TNF receptor-1, TNF receptor-2, monocyte chemoattractant protein-1, YKL-40, and soluble urokinase plasminogen activator receptor) and demonstrated that plasma KIM-1, TNF receptor-1, TNF receptor-2, urine KIM-1, EGF, monocyte chemoattractant protein-1, and urine -1 microglobulin are each independently associated with CKD progression in children. In this study, we used bootstrapped survival trees to identify a combination of biomarkers to predict CKD progression in children.

METHODS

The Chronic Kidney Disease in Children (CKiD) Cohort Study prospectively enrolled children aged 6 months to 16 years with an eGFR of 30–90 ml/min per 1.73 m. We measured biomarkers in stored plasma and urine collected 5 months after study enrollment. The primary outcome of CKD progression was a composite of 50% eGFR decline or kidney failure. We constructed a regression tree–based model for predicting the time to the composite event, using a panel of clinically relevant biomarkers with empirically derived thresholds, in addition to conventional risk factors.

RESULTS

Of the 599 children included, the median age was 12 years (interquartile range [IQR], 8–15), 371 (62%) were male, baseline urine protein-creatinine ratio was 0.33 (IQR, 0.12–0.95) mg/mg, and baseline eGFR was 53 (IQR, 40–66) ml/min per 1.73 m. Overall, 205 children (34%) reached the primary outcome of CKD progression. A single regression tree–based model using the most informative predictors with data-driven biomarker thresholds suggested a final set of four prognosis groups. In the final model, urine albumin/creatinine was the variable with the highest importance and along with urine EGF/creatinine identified the highest risk group of 24 children, 100% of whom developed CKD progression at a median time of 1.3 years (95% confidence interval [CI], 1.0 to 1.7). When the regression tree–derived risk group classifications were added to prediction models including the clinical risk factors, the C-statistic increased from 0.76 (95% CI, 0.71 to 0.80) to 0.85 (95% CI, 0.81 to 0.88).

CONCLUSIONS

Using regression tree–based methods, we identified a biomarker panel of urine albumin/creatinine, urine EGF/creatinine, plasma KIM-1, and eGFR, which significantly improved discrimination for CKD progression.

摘要

关键点

血浆生物标志物(肾损伤分子-1,KIM-1)、尿液生物标志物(表皮生长因子/肌酐和尿白蛋白-肌酐比值)以及估算肾小球滤过率(eGFR)可将慢性肾脏病(CKD)进展的儿童分为四个预后组。一组生物标志物可能能更好地反映儿童肾脏疾病的复杂性,并能对肾脏健康进行更全面的评估。

背景

我们之前研究了肾小管健康(表皮生长因子,EGF)、损伤(肾损伤分子-1 [KIM-1])、功能障碍(β2微球蛋白)和炎症(肿瘤坏死因子受体-1、肿瘤坏死因子受体-2、单核细胞趋化蛋白-1、YKL-40和可溶性尿激酶型纤溶酶原激活物受体)的生物标志物,并证明血浆KIM-1、肿瘤坏死因子受体-1、肿瘤坏死因子受体-2、尿液KIM-1、EGF、单核细胞趋化蛋白-1和尿液β2微球蛋白均与儿童CKD进展独立相关。在本研究中,我们使用自展生存树来确定一组生物标志物的组合,以预测儿童CKD的进展。

方法

儿童慢性肾脏病(CKiD)队列研究前瞻性纳入了年龄在6个月至16岁、eGFR为30 - 90 ml/(min·1.73m²)的儿童。我们在研究入组5个月后测量了储存的血浆和尿液中的生物标志物。CKD进展的主要结局是eGFR下降50%或肾衰竭的复合终点。除了传统危险因素外,我们使用一组具有经验性推导阈值的临床相关生物标志物构建了一个基于回归树的模型,用于预测复合事件发生的时间。

结果

纳入的599名儿童中,中位年龄为12岁(四分位间距[IQR],8 - 15岁),371名(62%)为男性,基线尿蛋白-肌酐比值为0.33(IQR,0.12 - 0.95)mg/mg,基线eGFR为53(IQR,40 - 66)ml/(min·1.73m²)。总体而言,205名儿童(34%)达到了CKD进展的主要结局。一个基于回归树的单一模型,使用信息含量最高的预测指标和数据驱动的生物标志物阈值,得出了最终的四个预后组。在最终模型中,尿白蛋白/肌酐是重要性最高的变量,与尿EGF/肌酐一起确定了24名儿童的最高风险组,其中100%在中位时间1.3年(95%置信区间[CI],1.0至1.7)出现CKD进展。当将回归树得出的风险组分类添加到包含临床危险因素的预测模型中时,C统计量从0.76(95%CI,0.71至0.80)增加到0.85(95%CI,0.81至0.88)。

结论

使用基于回归树的方法,我们确定了一个由尿白蛋白/肌酐、尿EGF/肌酐、血浆KIM-1和eGFR组成的生物标志物组合,该组合显著提高了对CKD进展的判别能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验