Suppr超能文献

scGO:用于细胞状态注释和疾病诊断的可解释深度神经网络。

scGO: interpretable deep neural network for cell status annotation and disease diagnosis.

作者信息

Wu You, Xu Pengfei, Wang Liyuan, Liu Shuai, Hou Yingnan, Lu Hui, Hu Peng, Li Xiaofei, Yu Xiang

机构信息

School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China.

School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dong Chuan Road, Shanghai 200240, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbaf018.

Abstract

Machine learning has emerged as a transformative tool for elucidating cellular heterogeneity in single-cell RNA sequencing. However, a significant challenge lies in the "black box" nature of deep learning models, which obscures the decision-making process and limits interpretability in cell status annotation. In this study, we introduced scGO, a Gene Ontology (GO)-inspired deep learning framework designed to provide interpretable cell status annotation for scRNA-seq data. scGO employs sparse neural networks to leverage the intrinsic biological relationships among genes, transcription factors, and GO terms, significantly augmenting interpretability and reducing computational cost. scGO outperforms state-of-the-art methods in the precise characterization of cell subtypes across diverse datasets. Our extensive experimentation across a spectrum of scRNA-seq datasets underscored the remarkable efficacy of scGO in disease diagnosis, prediction of developmental stages, and evaluation of disease severity and cellular senescence status. Furthermore, we incorporated in silico individual gene manipulations into the scGO model, introducing an additional layer for discovering therapeutic targets. Our results provide an interpretable model for accurately annotating cell status, capturing latent biological knowledge, and informing clinical practice.

摘要

机器学习已成为阐释单细胞RNA测序中细胞异质性的变革性工具。然而,一个重大挑战在于深度学习模型的“黑箱”性质,这使得决策过程变得模糊,并限制了细胞状态注释的可解释性。在本研究中,我们引入了scGO,这是一个受基因本体论(GO)启发的深度学习框架,旨在为scRNA-seq数据提供可解释的细胞状态注释。scGO采用稀疏神经网络来利用基因、转录因子和GO术语之间的内在生物学关系,显著增强了可解释性并降低了计算成本。在跨不同数据集精确表征细胞亚型方面,scGO优于现有方法。我们在一系列scRNA-seq数据集上进行的广泛实验强调了scGO在疾病诊断、发育阶段预测以及疾病严重程度和细胞衰老状态评估方面的显著功效。此外,我们将计算机模拟的单个基因操作纳入scGO模型,引入了一个额外的层次来发现治疗靶点。我们的结果为准确注释细胞状态、捕捉潜在生物学知识并为临床实践提供信息提供了一个可解释的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1555/11737892/207b5f60fcd1/bbaf018f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验