Bouabadi Bouchra, Hilger André, Kamm Paul H, Neu Tillmann R, Kardjilov Nikolay, Sintschuk Michael, Markötter Henning, Schedel-Niedrig Thomas, Abou-Ras Daniel, García-Moreno Francisco, Risse Sebastian
Department of Microstructure and Residual Stress Analysis, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Institute for Electrochemical Energy Storage (CE-IEES), Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Adv Sci (Weinh). 2025 Mar;12(10):e2414892. doi: 10.1002/advs.202414892. Epub 2025 Jan 17.
Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures. There is a significant need to develop an alloy-based anode that can be industrially manufactured and offers high reversible capacity. This necessitates a profound understanding of the interplay between structural changes and electrochemical performance. Here, operando X-ray imaging is used to correlate the morphological evolution to electrochemical performance in foil and foam systems. The 3D Sn-foam-like structure electrode is fabricated in-house as a practical approach to accommodate the volume expansion and alleviate the mechanical stress experienced upon alloying/dealloying. Results show that generating pores in Sn electrodes can help manage the volume expansion and mitigate the severe mechanical stress in thick electrodes during alloying/dealloying processes. The foam electrode demonstrates superior electrochemical performance compared to non-porous Sn foil with an equivalent absolute capacity. This work advances the understanding of the real-time morphological evolution of Sn bulky electrodes.
锡基电极是下一代锂离子电池很有前景的候选材料。然而,由于在锂嵌入和脱出时会发生剧烈的体积变化,它会遭受有害的微观结构变形。这些材料的设计进展仅限于复杂结构。迫切需要开发一种基于合金的阳极,这种阳极能够进行工业化生产并具有高可逆容量。这就需要深入了解结构变化与电化学性能之间的相互作用。在这里,采用原位X射线成像来关联箔和泡沫体系中形态演变与电化学性能。作为一种适应体积膨胀并减轻合金化/脱合金化过程中所经历机械应力的实用方法,内部制备了三维类泡沫锡结构电极。结果表明,在锡电极中产生孔隙有助于控制体积膨胀,并减轻厚电极在合金化/脱合金化过程中所承受的严重机械应力。与具有同等绝对容量的无孔锡箔相比,泡沫电极表现出优异的电化学性能。这项工作增进了对块状锡电极实时形态演变的理解。