Inam Wali, Bhadane Rajendra, Yan Jiaqi, Peurla Markus, Salo-Ahen Outi M H, Rosenholm Jessica M, Zhang Hongbo
Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland.
Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity (3rd fl.), Tykistökatu 6A, 20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Biocity, 20520 Turku, Finland; Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, 20520 Turku, Finland.
Adv Colloid Interface Sci. 2025 Apr;338:103400. doi: 10.1016/j.cis.2025.103400. Epub 2025 Jan 12.
In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure. Therefore, understanding particle surface related properties and interaction profile of core/shell, is pertinent to fully harness control over core/shell structure formation. In our study, employing microfluidics-assisted screening of diverse MSN cores with contrasting charged dextran derived polymers, we conducted detailed characterization using dynamic light scattering (DLS), transmission electron microscope (TEM) imaging, and molecular simulations (MD) for analyzing interaction energies and molecular interactions. Our findings reveal that self-assembly of a polymer around the MSN cores majorly proceeds among counter charged entities (core and shell). From molecular perspective, in addition to the electrostatic interactions, hydrogen bonded interactions also contribute to stabilizing polymer assembly. Contrarily, out data reveals that in case pi-cation and van der Waals interactions are dominant, encapsulation of MSN cores accomplishes regardless of particle surface charge. Therefore, by integrating morphological characterization and molecular insights from computational studies, we summarize the synthesis mechanism of core/shell nanostructures.
在杂化纳米材料领域,核/壳纳米粒子的构建为用聚合物或其他合适材料包裹粒子提供了一种有效策略,从而形成一种在其结构内具有独特特征的纳米复合材料。聚合物壳层可以通过纳米沉淀形成,通过控制流体流动、流体混合以及调节微流控装置的特性来进行优化。除了工艺优化外,聚合物组装在包封方面的成功很大程度上取决于核材料和壳材料之间共享的不同化学环境所产生的有利分子相互作用,这有助于核/壳纳米结构的形成。因此,了解核/壳粒子表面相关性质和相互作用概况,对于全面控制核/壳结构的形成至关重要。在我们的研究中,利用微流控技术辅助筛选具有不同电荷的葡聚糖衍生聚合物修饰的多种介孔二氧化硅纳米颗粒(MSN)核,我们使用动态光散射(DLS)、透射电子显微镜(TEM)成像和分子模拟(MD)进行了详细表征,以分析相互作用能和分子相互作用。我们的研究结果表明,聚合物在MSN核周围的自组装主要发生在带相反电荷的实体(核和壳)之间。从分子角度来看,除了静电相互作用外,氢键相互作用也有助于稳定聚合物组装。相反,我们的数据表明,在π-阳离子和范德华相互作用占主导的情况下,无论粒子表面电荷如何,MSN核的包封都能实现。因此,通过整合形态学表征和计算研究的分子见解,我们总结了核/壳纳米结构的合成机制。