Israr Juveriya, Kumar Ajay
Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India.
Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
Prog Mol Biol Transl Sci. 2025;210:163-203. doi: 10.1016/bs.pmbts.2024.07.019. Epub 2024 Aug 31.
The groundbreaking CRISPR-Cas gene editing method permits exact genetic code alteration. The "CRISPR" DNA protects bacteria from viruses. CRISPR-Cas utilizes a guide RNA to steer the Cas enzyme to the genome's gene editing target. After attaching to a sequence, Cas enzymes cleave DNA to insert, delete, or modify genes. The influence of CRISPR-Cas technology on molecular biology and genetics is profound. It allows for gene function research, animal disease models, and patient genetic therapy. Gene editing has transformed biotechnology, agriculture, and customized medicine. CRISPR-Cas could revolutionize genetics and medicine. CRISPR-Cas may accurately correct genetic flaws that underlie rare diseases, improving their therapy. Gene mutations make CRISPR-Cas gene editing a viable cure for uncommon diseases. We can use CRISPR-Cas to correct genetic abnormalities at the molecular level. This strategy offers hope for remedies and disease understanding. CRISPR-Cas genome editing may enable more targeted and effective treatments for rare medical illnesses with few therapy options. By developing base- and prime-editing CRISPR technology, CRISPR-Cas allows for accurate and efficient genome editing and advanced DNA modification. This advanced method provides precise DNA alterations without double-strand breakage. These advances have improved gene editing safety and precision, reducing unfavorable effects. Lipid nanoparticles, which use viral vectors, improve therapeutic cell and tissue targeting. In rare disorders, gene therapy may be possible with CRISPR-Cas clinical trials. CRISPR-Cas research is improving gene editing, delivery, and rare disease treatment.
开创性的CRISPR-Cas基因编辑方法允许精确改变遗传密码。“CRISPR”DNA保护细菌免受病毒侵害。CRISPR-Cas利用引导RNA将Cas酶导向基因组的基因编辑靶点。附着于一个序列后,Cas酶切割DNA以插入、删除或修改基因。CRISPR-Cas技术对分子生物学和遗传学的影响是深远的。它可用于基因功能研究、动物疾病模型和患者基因治疗。基因编辑已经改变了生物技术、农业和定制医学。CRISPR-Cas可能会给遗传学和医学带来变革。CRISPR-Cas可以准确纠正导致罕见疾病的基因缺陷,改善对这些疾病的治疗。基因突变使CRISPR-Cas基因编辑成为治疗罕见病的可行方法。我们可以利用CRISPR-Cas在分子水平上纠正基因异常。这一策略为治疗疾病和了解疾病带来了希望。CRISPR-Cas基因组编辑可能为治疗选择很少的罕见疾病带来更有针对性、更有效的治疗方法。通过开发碱基编辑和引导编辑的CRISPR技术,CRISPR-Cas实现了精确高效的基因组编辑和先进的DNA修饰。这种先进方法可在不产生双链断裂的情况下实现精确的DNA改变。这些进展提高了基因编辑的安全性和精确性,减少了不良影响。使用病毒载体的脂质纳米颗粒可改善治疗对细胞和组织的靶向性。在罕见病中,CRISPR-Cas临床试验可能使基因治疗成为可能。CRISPR-Cas研究正在改进基因编辑、基因递送和罕见病治疗。