Hevaganinge Anjana, Lowenstein Eva, Filatova Anna, Modak Mihir, Mogo Nandi Thales, Rowley Bryana, Yarmowsky Jenny, Ehizibolo Joshua, Hevaganinge Ravidu, Musser Amy, Kim Abbey, Neri Anthony, Conway Jessica, Yuan Yiding, Cattaneo Maurizio, Tee Sui Seng, Tao Yang
Fischell Department of Bioengineering, University of Maryland, College Park, USA.
Applied Imaging Solutions, LLC, Quincy, MA, USA.
Sci Rep. 2025 Jan 17;15(1):2307. doi: 10.1038/s41598-025-85930-2.
The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing. Replacing optical probes with contactless short-wave infrared (SWIR) hyperspectral cameras allows efficient collection of thousands of absorption signals in a handful of images. This high repetition allows for effective denoising of each spectrum, so interpretable linear models can quantify metabolites. To illustrate, an interpretable linear model called L-SLR is trained using small datasets obtained with a SWIR HSI camera to quantify fructose, viable cell density (VCD), glucose, and lactate. The performance of this model is also compared to other existing linear models, namely Partial Least Squares (PLS) and Non-negative Matrix Factorization (NMF). Using only 50% of the dataset for training, reasonable test performance of mean absolute error (MAE) and correlations (r) are achieved for glucose (r = 0.88, MAE = 37 mg/dL), lactate (r = 0.93, MAE = 15.08 mg/dL), and VCD (r = 0.81, MAE = 8.6 × 10 cells/mL). Further, these models are also able to handle quantification of a metabolite like fructose in the presence of high background concentration of similar metabolite with almost identical chemical interactions in water like glucose. The model achieves reasonable quantification performance for large fructose level (100-1000 mg/dL) quantification (r = 0.92, MAE = 25.1 mg/dL) and small fructose level (< 60 mg/dL) concentrations (r = 0.85, MAE = 4.97 mg/dL) in complex media like Fetal Bovine Serum (FBS). Finally, the model provides sparse interpretable weight matrices that hint at the underlying solution changes that correlate to each cell parameter prediction.
用于无标记定量细胞参数的光学传感器的开发在生物医学领域有众多用途。然而,使用当前的光学探针需要费力地收集足够大的数据集,以便将光学探针信号校准到真实的代谢物浓度。此外,大多数从业者发现很难自信地采用黑箱化学计量模型,这些模型在生物制药制造等高风险应用中难以进行故障排除。用非接触式短波红外(SWIR)高光谱相机取代光学探针,可以在少数图像中高效收集数千个吸收信号。这种高重复性允许对每个光谱进行有效的去噪,因此可解释的线性模型可以对代谢物进行定量。为了说明这一点,使用通过SWIR HSI相机获得的小数据集训练了一个名为L-SLR的可解释线性模型,以定量果糖、活细胞密度(VCD)、葡萄糖和乳酸。该模型的性能还与其他现有的线性模型进行了比较,即偏最小二乘法(PLS)和非负矩阵分解(NMF)。仅使用50%的数据集进行训练,对于葡萄糖(r = 0.88,MAE = 37 mg/dL)、乳酸(r = 0.93,MAE = 15.08 mg/dL)和VCD(r = 0.81,MAE = 8.6×10个细胞/mL),均实现了合理的测试性能,平均绝对误差(MAE)和相关性(r)。此外,这些模型还能够在存在高背景浓度的类似代谢物(如葡萄糖,在水中具有几乎相同的化学相互作用)的情况下,对果糖等代谢物进行定量。该模型在复杂介质(如胎牛血清(FBS))中对大果糖水平(100 - 1000 mg/dL)的定量(r = 0.92,MAE = 25.1 mg/dL)和小果糖水平( < 60 mg/dL)浓度(r = 0.85,MAE = 4.97 mg/dL)实现了合理的定量性能。最后,该模型提供了稀疏的可解释权重矩阵,暗示了与每个细胞参数预测相关的潜在解决方案变化。