Wang Beilun, Lin Peijun, Zhong Yuwei, Tan Xiao, Shen Yangyang, Huang Yi, Jin Kai, Zhang Yan, Zhan Ying, Shen Dian, Wang Meng, Yu Zhou, Wu Yihan
School of Computer Science and Engineering, Southeast University, Nanjing, China.
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
Nat Microbiol. 2025 Feb;10(2):332-347. doi: 10.1038/s41564-024-01907-3. Epub 2025 Jan 17.
Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs. Of these, the 6 most effective were synthesized and tested against multidrug-resistant pathogens and demonstrated activity against carbapenem-resistant species Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii, and vancomycin-resistant Enterococcus faecium. The most potent AMP, pep-19-mod, was validated in vivo, achieving over 95% reduction in bacterial loads in mouse models of thigh infection through both systemic and local administration. Our approach advances the automatic identification and optimization of AMPs.
人工智能(AI)是一种在多种微生物物种中识别新型抗菌化合物的有前景的方法。在此,我们开发了一种基于人工智能的、可解释的深度学习模型EvoGradient,它可以预测抗菌肽(AMP)的效力,并虚拟修改肽序列以产生更有效的AMP,类似于计算机辅助定向进化。我们将该模型应用于低丰度人类口腔细菌编码的肽,从而将32种肽虚拟进化为有效的AMP。其中,最有效的6种被合成并针对多重耐药病原体进行了测试,结果显示它们对耐碳青霉烯类的大肠杆菌、肺炎克雷伯菌和鲍曼不动杆菌以及耐万古霉素的粪肠球菌具有活性。最有效的AMP,即pep-19-mod,在体内得到了验证,通过全身和局部给药,在大腿感染小鼠模型中细菌载量减少了95%以上。我们的方法推动了AMP的自动识别和优化。