Ponomarchuk Olga, Boudreault Francis, Gryczynski Ignacy, Lee Bong, Dzyuba Sergei V, Fudala Rafal, Gryczynski Zygmunt, Hanrahan John W, Grygorczyk Ryszard
Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada.
Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States.
ACS Nano. 2025 Feb 4;19(4):4637-4649. doi: 10.1021/acsnano.4c14927. Epub 2025 Jan 18.
The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release. Current understanding of mucin/mucus structure before and after secretion remains limited, and contradictory models exist. Here, we used a molecular viscometer and fluorescence lifetime imaging of human bronchoepithelial cells (Normal and CF) to measure nanometer-scale viscosity. We found significantly elevated intraluminal nanoviscosity in a population of CF mucin granules, indicating an intrinsic, presecretory mucin defect. Nanoviscosity influences protein conformational dynamics and function. Its elevation along the protein secretory pathway could arise from molecular overcrowding, impacting mucin's post-translational processing, hydration, and mucus rheology after release. The nanoviscosity of secreted CF mucus was elevated compared to that of non-CF. Interestingly, it was higher after release than in granules. Validation experiments indicate that reduced mobility of water hydrating mucin macromolecules may contribute to the high nanoviscosity in mucus and mucin granules. This suggests that mucins have a weakly ordered state in granules but adopt a highly ordered, nematic crystalline structure when secreted. This challenges the traditional view of mucus as a porous agarose-like gel and suggests an alternative model for mucin organization before and after secretion. Our study also indicates that endoplasmic reticulum stress due to molecular overcrowding could contribute to mucus pathogenesis in CF cells. It encourages the development of therapeutics that target presecretory mechanisms in CF and other muco-obstructive lung diseases.
异常黏稠和浓稠的黏液是囊性纤维化(CF)的一个标志。突变的CF基因如何导致异常黏液仍然是一个至关重要但尚未得到解答的问题。黏液是由凝胶形成性黏蛋白大分子水合作用产生的,这些大分子在释放前储存在细胞内颗粒中。目前对分泌前后黏蛋白/黏液结构的理解仍然有限,并且存在相互矛盾的模型。在这里,我们使用分子黏度计和人支气管上皮细胞(正常和CF)的荧光寿命成像来测量纳米级黏度。我们发现CF黏蛋白颗粒群体的管腔内纳米黏度显著升高,表明存在内在的、分泌前的黏蛋白缺陷。纳米黏度影响蛋白质构象动力学和功能。其在蛋白质分泌途径中的升高可能源于分子拥挤,影响黏蛋白的翻译后加工、水合作用以及释放后黏液的流变学。与非CF黏液相比,分泌的CF黏液的纳米黏度升高。有趣的是,释放后比在颗粒中更高。验证实验表明,水合黏蛋白大分子的水流动性降低可能导致黏液和黏蛋白颗粒中的高纳米黏度。这表明黏蛋白在颗粒中具有弱有序状态,但在分泌时采用高度有序的向列晶体结构。这挑战了传统观点,即黏液是一种多孔的琼脂糖样凝胶,并提出了分泌前后黏蛋白组织的替代模型。我们的研究还表明,由于分子拥挤导致的内质网应激可能导致CF细胞中的黏液发病机制。这鼓励开发针对CF和其他黏液阻塞性肺部疾病分泌前机制的治疗方法。