Suppr超能文献

基于分子反应性描述符和机器学习方法的气态介质电气强度预测模型。

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

作者信息

Luo Lingyun, Yang Shuai, Yang Zhao, Xia Hanyi, Xiao Jixiong, Wang Hang

机构信息

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

出版信息

J Mol Model. 2025 Jan 18;31(2):53. doi: 10.1007/s00894-024-06254-y.

Abstract

CONTEXT

Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength. These molecular descriptors are categorized into two types: area-related descriptors and reactivity-related descriptors. Furthermore, the predictive performance between statistical models and machine learning models is compared. The statistical models include multiple linear regression, and polynomial regression, while machine learning models consist of K-nearest neighbors, random forest, and gradient boosting decision trees. The results indicate that machine learning models are generally better than statistical models in terms of predictive accuracy and stability, with gradient boosting decision trees demonstrating the best performance. Specifically, the coefficient of determination and mean squared error on the testing set after 1000 training iterations are 0.864 and 0.105, respectively. Therefore, the application of molecular reactivity descriptors and machine learning methods can effectively predict the electrical strength of gaseous medium.

METHODS

The Gaussian 16 software is employed to optimize the molecular structure with the M06-2X functional and def2 series basis sets in this study. Then, the Multiwfn is utilized for wavefunction analysis to obtain molecular surface descriptors.

摘要

背景

气体放电中的电离和吸附类似于亲电反应和亲核反应。表征诸如静电势描述符等反应的分子描述符可用于预测环境友好气体的电气强度。在本研究中,使用73种分子的描述符与电气强度进行相关性分析。这些分子描述符分为两类:与面积相关的描述符和与反应性相关的描述符。此外,还比较了统计模型和机器学习模型之间的预测性能。统计模型包括多元线性回归和多项式回归,而机器学习模型由K近邻、随机森林和梯度提升决策树组成。结果表明,机器学习模型在预测准确性和稳定性方面通常优于统计模型,其中梯度提升决策树表现最佳。具体而言,经过1000次训练迭代后,测试集上的决定系数和均方误差分别为0.864和0.105。因此,分子反应性描述符和机器学习方法的应用可以有效地预测气态介质的电气强度。

方法

本研究使用高斯16软件,采用M06 - 2X泛函和def2系列基组优化分子结构。然后,利用Multiwfn进行波函数分析以获得分子表面描述符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验