Suppr超能文献

受酶启发的用于选择性氧还原的单硒位点

Enzyme-Inspired Single Selenium Site for Selective Oxygen Reduction.

作者信息

Zhang Peng-Yang, Xu Xia, Yu Wen-Song, Duan Zhi-Yao, Huang Huan, Wang Tao, Fu Gang, Zhou Zhi-You, Wang Yu-Cheng, Sun Shi-Gang

机构信息

State Key Laboratory of Physical Chemistry of Solids, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi, 710072, China.

出版信息

Angew Chem Int Ed Engl. 2025 Feb 17;64(8):e202418897. doi: 10.1002/anie.202418897. Epub 2025 Jan 28.

Abstract

Learning from nature has garnered significant attention in the scientific community for its potential to inspire creative solutions in material or catalyst design. The study highlights the design of a biomimetic single selenium (Se) site-modified carbon (C) moiety that retains the unique reactivity of selenoenzyme with peroxides, which plays crucial roles in selectively catalyzing the oxygen reduction reaction (ORR). The as-designed Se-C demonstrates nearly 100 % 4-electron selectivity, evidenced by 0.039 % of HO yield at 0.5 V versus reversible hydrogen electrode, outperforming commercial platinum (Pt) by 65 times. In situ X-ray absorption spectroscopy and theoretical calculations attribute this exceptional selectivity to the enzyme-like behaviors of the Se site to steal an O atom from peroxide intermediates. The second achievement is the significantly increased consecutive 2+2 electron selectivity. Benefiting from the enzyme-like HO reduction activity with a higher onset potential of 0.915 V compared to Pt at 0.875 V, the Se-C as a secondary catalytic site reduced the HO yields of the Co-N-C, Fe-N-C, and N-C catalysts by 96 %, 67 %, and 98 %, respectively, via a consecutive 2+2 electron pathway. This also leads to more stable catalysts via protecting the active sites from oxidative attacks. This work establishes new pathways for precise tuning of reaction selectivity in ORR and beyond.

摘要

向自然学习因其在材料或催化剂设计中激发创造性解决方案的潜力而在科学界引起了广泛关注。该研究突出了一种仿生单硒(Se)位点修饰碳(C)部分的设计,该部分保留了硒酶与过氧化物的独特反应活性,这在选择性催化氧还原反应(ORR)中起着关键作用。所设计的Se-C表现出近100%的4电子选择性,在相对于可逆氢电极0.5 V时HO产率为0.039%可证明这一点,其性能比商业铂(Pt)高出65倍。原位X射线吸收光谱和理论计算将这种卓越的选择性归因于Se位点类似酶的行为,即从过氧化物中间体夺取一个O原子。第二项成就是连续2 + 2电子选择性显著提高。受益于类似酶的HO还原活性,与Pt在0.875 V时相比,Se-C作为二级催化位点具有更高的起始电位0.915 V,通过连续2 + 2电子途径分别将Co-N-C、Fe-N-C和N-C催化剂的HO产率降低了96%、67%和98%。这也通过保护活性位点免受氧化攻击而导致更稳定的催化剂。这项工作为精确调节ORR及其他反应的选择性开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验