Zhao Ye-Min, Zhang Peng-Cheng, Xu Chao, Zhou Xin-You, Liao Li-Mei, Wei Ping-Jie, Liu Ershuai, Chen Hengquan, He Qinggang, Liu Jin-Gang
Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.
ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17334-17342. doi: 10.1021/acsami.9b20711. Epub 2020 Apr 3.
There is an urgent need for developing nonprecious metal catalysts to replace Pt-based electrocatalysts for oxygen reduction reaction (ORR) in fuel cells. Atomically dispersed M-N/C catalysts have shown promising ORR activity; however, enhancing their performance through modulating their active site structure is still a challenge. In this study, a simple approach was proposed for preparing atomically dispersed iron catalysts embedded in nitrogen- and fluorine-doped porous carbon materials with five-coordinated Fe-N sites. The C@PVI-(DFTPP)Fe-800 catalyst, obtained through pyrolysis of a bio-inspired iron porphyrin precursor coordinated with an axial imidazole from the surface of polyvinylimidazole-grafted carbon black at 800 °C under an Ar atmosphere, exhibited a high electrocatalytic activity with a half-wave potential of 0.88 V versus the reversible hydrogen electrode for ORR through a four-electron reduction pathway in alkaline media. In addition, an anion-exchange membrane electrode assembly (MEA) with C@PVI-(DFTPP)Fe-800 as the cathode electrocatalyst generated a maximum power density of 0.104 W cm and a current density of 0.317 mA cm. X-ray absorption spectroscopy demonstrated that a single-atom catalyst (Fe-N/C) with an Fe-N active site can selectively be obtained; furthermore, the catalyst ORR activity can be tuned using fluorine atom doping through appropriate pre-assembling of the molecular catalyst on a carbon support followed by pyrolysis. This provides an effective strategy to prepare structure-performance-correlated electrocatalysts at the molecular level with a large number of M-N active sites for ORR. This method can also be utilized for designing other catalysts.
迫切需要开发非贵金属催化剂来替代用于燃料电池中氧还原反应(ORR)的铂基电催化剂。原子分散的M-N/C催化剂已显示出有前景的ORR活性;然而,通过调节其活性位点结构来提高其性能仍然是一个挑战。在本研究中,提出了一种简单的方法来制备嵌入具有五配位Fe-N位点的氮和氟掺杂多孔碳材料中的原子分散铁催化剂。通过在氩气气氛下于800℃热解与来自聚乙烯基咪唑接枝炭黑表面的轴向咪唑配位的生物启发铁卟啉前体而获得的C@PVI-(DFTPP)Fe-800催化剂,在碱性介质中通过四电子还原途径对ORR表现出高电催化活性,相对于可逆氢电极的半波电位为0.88V。此外,以C@PVI-(DFTPP)Fe-800作为阴极电催化剂的阴离子交换膜电极组件(MEA)产生的最大功率密度为0.104W/cm²,电流密度为0.317mA/cm²。X射线吸收光谱表明可以选择性地获得具有Fe-N活性位点的单原子催化剂(Fe-N/C);此外,通过在碳载体上对分子催化剂进行适当的预组装然后热解,利用氟原子掺杂可以调节催化剂的ORR活性。这提供了一种在分子水平上制备与结构-性能相关的电催化剂的有效策略,该电催化剂具有大量用于ORR的M-N活性位点。该方法也可用于设计其他催化剂。