Shi Hao, Wang Tanyuan, Lin Zijie, Liu Shuxia, Liu Xuan, Zhou Ruixin, Cai Zhao, Huang Yunhui, Li Qing
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan, Hubei, 430074, China.
Angew Chem Int Ed Engl. 2025 Apr 1;64(14):e202424476. doi: 10.1002/anie.202424476. Epub 2025 Jan 31.
Organics electrooxidation coupled hydrogen production has attracted increasing attention due to the low operation voltage. Nevertheless, the spontaneous production of hydrogen coupled with organics valorization remains challenging. Herein, we develop ultrathin AuPt twin nanowire (NW) catalysts for both electrochemical glucose oxidation and hydrogen evolution reaction towards a spontaneous hydrogen production system. The more Pt-Au coordination and the localized tensile strain generated on twin boundaries of AuPt NWs facilitate the selective glucose electro-oxidation to gluconic acid (GNA) compared to Pt NWs (a low onset potential of 0.07 V and selectivity >90 %). In situ spectroscopy and theoretical calculations reveal that AuPt NWs could reduce the energy barriers for GNA generation and alleviate the poisoning of Pt sites via a 'Pt-to-Au site transfer' mechanism, which facilitates the desorption of strongly absorbed gluconolactone. Therefore, the asymmetric cell equipped with AuPt NWs catalysts realizes the spontaneous hydrogen production and glucose valorization with a peak power of 50 mW, which outputs the voltage of 0.24 V at 50 mA cm, outperforming the state-of-the-art electrolyzers for hydrogen production. The production of 1 kg H of the device is accompanied with $64.2 valorization of the anode product ($1200 ton for GNA), and 5.36 kW h of generated electricity.
由于操作电压低,有机电化学氧化耦合产氢已引起越来越多的关注。然而,与有机物质增值耦合的自发产氢仍然具有挑战性。在此,我们开发了超薄的金铂双金属纳米线(NW)催化剂,用于电化学葡萄糖氧化和析氢反应,以构建一个自发产氢系统。与铂纳米线相比,金铂纳米线孪晶界上更多的铂-金配位和局部拉伸应变促进了葡萄糖选择性电氧化为葡萄糖酸(GNA)(起始电位低至0.07 V,选择性>90%)。原位光谱和理论计算表明,金铂纳米线可以降低生成GNA的能量势垒,并通过“铂到金位点转移”机制减轻铂位点的中毒,这有助于强吸附的葡萄糖内酯的解吸。因此,配备金铂纳米线催化剂的不对称电池实现了自发产氢和葡萄糖增值,峰值功率为50 mW,在50 mA cm时输出电压为0.24 V,优于目前最先进的产氢电解槽。该装置每生产1 kg氢气,阳极产物增值64.2美元(葡萄糖酸为1200美元/吨),并产生5.36 kW h的电能。