Suppr超能文献

香蕉图像数据库(BananaImageBD):一个用于孟加拉国香蕉品种分类和成熟阶段检测的综合香蕉图像数据集。

BananaImageBD: A comprehensive banana image dataset for classification of banana varieties and detection of ripeness stages in Bangladesh.

作者信息

Ferdaus Md Hasanul, Prito Rizvee Hassan, Rasel Ahmed Abdal Shafi, Ahmed Masud, Saykot Md Jahid Hassan, Shanta Shanjida Sultan, Akter Sonali, Das Ankan Chandra, Islam Mohammad Manzurul, Hasan Mahamudul, Ali Md Sawkat

机构信息

Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh.

Department of Agricultural Extension, Ministry of Agriculture, Bogura, Bangladesh.

出版信息

Data Brief. 2024 Dec 19;58:111239. doi: 10.1016/j.dib.2024.111239. eCollection 2025 Feb.

Abstract

Bananas are among the most widely consumed fruits globally due to their appealing flavor, high nutritional value, and ease of digestion. In Bangladesh, bananas hold significant agricultural importance, being one of the most extensively cultivated fruits in terms of land coverage and ranking third in production volume. The banana image dataset presented in this article includes clear and detailed images of four common banana varieties in Bangladesh: Sagor Kola (), Shabri Kola (), Bangla Kola ( sp.), and Champa Kola (), as well as four key stages of banana ripeness: Green, Semi-ripe, Ripe, and Overripe. The bananas were collected from wholesale markets and retail fruit shops located in different places in Bangladesh. Overall, the dataset has 2471 original images of different varieties of bananas and 820 original images of varying ripeness stages of bananas. All the images were carefully captured using a high-quality smartphone camera. Later, each image was manually reviewed, maintaining the quality standard throughout the dataset. The augmented version of the banana variety classification dataset contains 7413 images and the augmented banana ripeness stages dataset contains 2457 images. The dataset possesses immense potential in driving innovation and development of automated and efficient processes and mechanisms in several fields, including precision agriculture, food processing, and supply chain management. Machine Learning (ML) and Deep Learning (DL) models can be trained on this dataset to accurately categorize banana varieties and determine their ripeness stages. Such ML and DL models can be leveraged to develop automated systems to determine the optimal harvest time, establish standards for quality control of bananas, develop products and marketing strategies through analysis of consumer preferences for various banana varieties and ripeness levels, and streamline the banana supply chain through improvements in harvesting, sorting, packaging, and inventory management. Additionally, researchers aiming to contribute to developing Computer Vision technologies in food and agricultural sciences will find this dataset valuable in advancing precision farming and food processing mechanisms. Therefore, the dataset has a vast capacity for automating banana production and processing, minimizing the costs of manual labor, and improving overall efficiency.

摘要

由于其诱人的风味、高营养价值和易于消化,香蕉是全球消费最广泛的水果之一。在孟加拉国,香蕉具有重要的农业地位,就种植面积而言,它是种植最广泛的水果之一,产量排名第三。本文呈现的香蕉图像数据集包括孟加拉国四种常见香蕉品种的清晰详细图像:萨戈尔可乐蕉()、沙布里可乐蕉()、孟加拉可乐蕉( 种)和占巴可乐蕉(),以及香蕉成熟的四个关键阶段:绿色、半熟、成熟和过熟。这些香蕉是从孟加拉国不同地方的批发市场和零售水果店收集的。总体而言,该数据集有2471张不同品种香蕉的原始图像和820张不同成熟阶段香蕉的原始图像。所有图像均使用高质量智能手机相机精心拍摄。随后,对每张图像进行人工审核,确保整个数据集的质量标准。香蕉品种分类数据集的增强版本包含7413张图像,香蕉成熟阶段增强数据集包含2457张图像。该数据集在推动包括精准农业、食品加工和供应链管理在内的多个领域的自动化和高效流程及机制的创新与发展方面具有巨大潜力。可以在此数据集上训练机器学习(ML)和深度学习(DL)模型,以准确分类香蕉品种并确定其成熟阶段。此类ML和DL模型可用于开发自动化系统,以确定最佳收获时间,制定香蕉质量控制标准,通过分析消费者对各种香蕉品种和成熟度水平的偏好来制定产品和营销策略,并通过改进收获、分拣、包装和库存管理来优化香蕉供应链。此外,旨在为食品和农业科学领域的计算机视觉技术发展做出贡献的研究人员会发现该数据集对推进精准农业和食品加工机制很有价值。因此,该数据集在实现香蕉生产和加工自动化、降低人工成本以及提高整体效率方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d814/11742353/21da86599cb2/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验