Suppr超能文献

相似文献

1
Flow stress stabilization of Zn-Cu-Mn-Mg alloys using thermomechanical processing.
Mater Charact. 2022 Jun;188. doi: 10.1016/j.matchar.2022.111928. Epub 2022 Apr 25.
2
Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting.
Acta Biomater. 2020 Mar 15;105:319-335. doi: 10.1016/j.actbio.2020.01.028. Epub 2020 Jan 23.
3
The effects of alloying with Cu and Mn and thermal treatments on the mechanical instability of Zn-0.05Mg alloy.
Mater Sci Eng A Struct Mater. 2020 Jan 7;770. doi: 10.1016/j.msea.2019.138529. Epub 2019 Oct 9.
4
Precipitation induced room temperature superplasticity in Zn-Cu alloys.
Mater Lett. 2019 Jun 1;244:203-206. doi: 10.1016/j.matlet.2019.02.084. Epub 2019 Feb 23.
5
380 MPa-30% grade biodegradable Zn-Mn-Mg-Ca alloy: Bimodal grain structure, large work-hardening strain, and enhanced biocompatibility.
Acta Biomater. 2025 Jan 24;193:584-603. doi: 10.1016/j.actbio.2024.12.050. Epub 2024 Dec 20.
6
Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111391. doi: 10.1016/j.msec.2020.111391. Epub 2020 Aug 22.
7
Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications.
J Mech Behav Biomed Mater. 2017 Aug;72:182-191. doi: 10.1016/j.jmbbm.2017.05.013. Epub 2017 May 6.
9
Additively manufactured biodegradable Zn-Mn-based implants with an unprecedented balance of strength and ductility.
Acta Biomater. 2025 Apr;196:506-522. doi: 10.1016/j.actbio.2025.02.047. Epub 2025 Feb 22.
10
Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications.
Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:1170-1181. doi: 10.1016/j.msec.2017.04.023. Epub 2017 Apr 6.

引用本文的文献

1
Microstructural Control of Zn Alloy by Melt Spinning - A Novel Approach Towards Fabrication of Advanced Biodegradable Biomedical Materials.
Mater Sci Eng A Struct Mater. 2025 Jul;934. doi: 10.1016/j.msea.2025.148347. Epub 2025 Apr 15.

本文引用的文献

2
Fine-tuning of mechanical properties in a Zn-Ag-Mg alloy via cold plastic deformation process and post-deformation annealing.
Bioact Mater. 2021 Mar 21;6(10):3424-3436. doi: 10.1016/j.bioactmat.2021.03.017. eCollection 2021 Oct.
3
Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111391. doi: 10.1016/j.msec.2020.111391. Epub 2020 Aug 22.
4
The effects of alloying with Cu and Mn and thermal treatments on the mechanical instability of Zn-0.05Mg alloy.
Mater Sci Eng A Struct Mater. 2020 Jan 7;770. doi: 10.1016/j.msea.2019.138529. Epub 2019 Oct 9.
5
Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn-Fe alloy through second phase refinement.
Mater Sci Eng C Mater Biol Appl. 2020 Nov;116:111197. doi: 10.1016/j.msec.2020.111197. Epub 2020 Jun 17.
6
Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting.
Acta Biomater. 2020 Mar 15;105:319-335. doi: 10.1016/j.actbio.2020.01.028. Epub 2020 Jan 23.
7
Precipitation induced room temperature superplasticity in Zn-Cu alloys.
Mater Lett. 2019 Jun 1;244:203-206. doi: 10.1016/j.matlet.2019.02.084. Epub 2019 Feb 23.
8
Effects of extrusion temperature on microstructure, mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy.
Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110106. doi: 10.1016/j.msec.2019.110106. Epub 2019 Aug 21.
9
In Vitro Corrosion and in Vivo Response to Zinc Implants with Electropolished and Anodized Surfaces.
ACS Appl Mater Interfaces. 2019 Jun 5;11(22):19884-19893. doi: 10.1021/acsami.9b05370. Epub 2019 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验