Wellekens Karolien, Koshy Priyanka, Naesens Maarten
Department of Microbiology, Immunology and Transplantation, KU Leuven.
Department of Nephrology and Kidney Transplantation.
Curr Opin Nephrol Hypertens. 2025 May 1;34(3):185-190. doi: 10.1097/MNH.0000000000001064. Epub 2025 Jan 20.
This review explores the variability in preimplantation kidney biopsy processing methods, emphasizing their impact on histological interpretation and allocation decisions driven by biopsy findings. With the increasing use of artificial intelligence (AI) in digital pathology, it is timely to evaluate whether these advancements can overcome current challenges and improve organ allocation amidst a growing organ shortage.
Significant inconsistencies exist in biopsy methodologies, including core versus wedge sampling, frozen versus paraffin-embedded processing, and variability in pathologist expertise. These differences complicate study comparisons and limit the reproducibility of histological assessments. Emerging AI-driven tools and digital pathology show potential for standardizing assessments, enhancing reproducibility, and reducing dependence on expert pathologists. However, few studies have validated their clinical utility or demonstrated their predictive performance for long-term outcomes.
Novel AI-driven tools hold promise for improving the standardization and accuracy of preimplantation kidney biopsy assessments. However, their clinical application remains limited due to a lack of proven associations with posttransplant outcomes and insufficient evaluation of predictive performance metrics. Future research should prioritize longitudinal studies using large-scale datasets, rigorous validation, and comprehensive assessments of predictive performance for both short- and long-term outcomes to fully establish their clinical utility.
本综述探讨了植入前肾脏活检处理方法的变异性,强调了它们对组织学解释以及活检结果驱动的分配决策的影响。随着人工智能(AI)在数字病理学中的应用日益增加,现在正是评估这些进展能否克服当前挑战并在器官短缺日益严重的情况下改善器官分配的时候。
活检方法存在显著不一致性,包括芯针活检与楔形活检、冷冻与石蜡包埋处理,以及病理学家专业知识的差异。这些差异使研究比较变得复杂,并限制了组织学评估的可重复性。新兴的人工智能驱动工具和数字病理学显示出标准化评估、提高可重复性以及减少对专家病理学家依赖的潜力。然而,很少有研究验证它们的临床效用或证明它们对长期结果的预测性能。
新型人工智能驱动工具有望提高植入前肾脏活检评估的标准化和准确性。然而,由于缺乏与移植后结果的已证实关联以及对预测性能指标的评估不足,它们的临床应用仍然有限。未来的研究应优先进行使用大规模数据集的纵向研究、严格验证以及对短期和长期结果的预测性能进行全面评估,以充分确立它们的临床效用。