Division of Pathology, Central Hospital Bolzano, Bolzano, Italy.
Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, MI, USA.
J Nephrol. 2022 Sep;35(7):1801-1808. doi: 10.1007/s40620-022-01327-8. Epub 2022 Apr 19.
Transplant nephropathology is a highly specialized field of pathology comprising both the evaluation of organ donor biopsy for organ allocation and post-transplant graft biopsy for assessment of rejection or graft damage. The introduction of digital pathology with whole-slide imaging (WSI) in clinical research, trials and practice has catalyzed the application of artificial intelligence (AI) for histopathology, with development of novel machine-learning models for tissue interrogation and discovery. We aimed to review the literature for studies specifically applying AI algorithms to WSI-digitized pre-implantation kidney biopsy.
A systematic search was carried out in the electronic databases PubMed-MEDLINE and Embase until 25th September, 2021 with a combination of the key terms "kidney", "biopsy", "transplantation" and "artificial intelligence" and their aliases. Studies dealing with the application of AI algorithms coupled with WSI in pre-implantation kidney biopsies were included. The main theme addressed was detection and quantification of tissue components. Extracted data were: author, year and country of the study, type of biopsy features investigated, number of cases, type of algorithm deployed, main results of the study in terms of diagnostic outcome, and the main limitations of the study.
Of 5761 retrieved articles, 7 met our inclusion criteria. All studies focused largely on AI-based detection and classification of glomerular structures and to a lesser extent on tubular and vascular structures. Performance of AI algorithms was excellent and promising.
All studies highlighted the importance of expert pathologist annotation to reliably train models and the need to acknowledge clinical nuances of the pre-implantation setting. Close cooperation between computer scientists and practicing as well as expert renal pathologists is needed, helping to refine the performance of AI-based models for routine pre-implantation kidney biopsy clinical practice.
移植肾病理学是病理学的一个高度专业化领域,包括对器官供体活检进行器官分配评估以及对移植后移植物活检进行排斥或移植物损伤评估。数字病理学与全切片成像(WSI)在临床研究、试验和实践中的引入,促进了人工智能(AI)在组织病理学中的应用,为组织分析和发现开发了新型机器学习模型。我们旨在回顾专门将 AI 算法应用于 WSI 数字化移植前肾活检的文献。
我们在电子数据库 PubMed-MEDLINE 和 Embase 中进行了系统搜索,截至 2021 年 9 月 25 日,使用了“kidney”、“biopsy”、“transplantation”和“artificial intelligence”及其别名的组合关键词。纳入了应用 AI 算法与 WSI 结合进行移植前肾活检的研究。主要主题是检测和量化组织成分。提取的数据包括:研究作者、年份和国家、研究中活检特征的类型、病例数量、部署的算法类型、研究在诊断结果方面的主要结果,以及研究的主要局限性。
在检索到的 5761 篇文章中,有 7 篇符合我们的纳入标准。所有研究主要集中在基于 AI 的肾小球结构检测和分类上,在较小程度上也集中在肾小管和血管结构上。AI 算法的性能非常出色且有前景。
所有研究都强调了专家病理学家注释以可靠地训练模型的重要性,以及需要承认移植前环境的临床细微差别。需要计算机科学家与实践和专家肾脏病理学家密切合作,帮助改进基于 AI 的模型在常规移植前肾活检临床实践中的性能。