Suppr超能文献

用于制氢的原子级精细调控有机-无机碳分子筛膜

Atomically Fine-Tuning Organic-Inorganic Carbon Molecular Sieve Membranes for Hydrogen Production.

作者信息

Hu Leiqing, Lee Won-Il, Chen Kai, Roy Soumyabrata, Fung Kieran, Kisslinger Kim, Deng Erda, Ding Yifu, Ajayan Pulickel M, Nam Chang-Yong, Lin Haiqing

机构信息

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.

出版信息

ACS Nano. 2025 Feb 4;19(4):4663-4671. doi: 10.1021/acsnano.4c15126. Epub 2025 Jan 20.

Abstract

Polymeric membranes with great processability are attractive for the H/CO separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H from CO. Herein, we demonstrate a scalable way of carbonizing polybenzimidazole (PBI) at low temperatures, followed by vapor phase infiltration (VPI) to atomically narrow ultramicropores throughout the films, forming hybrid organic-inorganic carbon molecular sieves (CMSs). One VPI cycle (100 s) for the PBI carbonized at 500 °C remarkably increases H/CO selectivity from 9.6 to 83 at 100 °C, surpassing Robeson's upper bound. The CMS demonstrates a stable H/CO separation performance when challenged with simulated syngas streams and can be fabricated into thin-film composite membranes, outperforming state-of-the-art membranes. The scalable approach can be ubiquitous to molecularly fine-tune ultramicropores of leading polymeric membranes to further improve their size-sieving ability and thus separation efficiency.

摘要

具有良好加工性能的聚合物膜对于从可再生生物质中制氢并进行碳捕获以实现利用和封存所需的H/CO分离具有吸引力。然而,设计聚合物结构以获得所需的亚3.3 Å超微孔以有效地从CO中筛分H仍然难以实现。在此,我们展示了一种在低温下碳化聚苯并咪唑(PBI)的可扩展方法,随后进行气相渗透(VPI)以使整个薄膜中的超微孔原子级变窄,形成有机-无机杂化碳分子筛(CMS)。在500°C碳化的PBI进行一个VPI循环(100秒),在100°C时H/CO选择性从9.6显著提高到83,超过了罗布森上限。当受到模拟合成气流的挑战时,该CMS表现出稳定的H/CO分离性能,并且可以制成薄膜复合膜,性能优于现有膜。这种可扩展方法可广泛用于对领先聚合物膜的超微孔进行分子微调,以进一步提高其尺寸筛分能力,从而提高分离效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验