Suppr超能文献

基于深度学习技术的图像检索系统性能分析

Performance analysis of image retrieval system using deep learning techniques.

作者信息

B Selvalakshmi, K Hemalatha, S Kumarganesh, P Vijayalakshmi

机构信息

Department of Computer Science and Engineering, Tagore Engineering College, Chennai, Tamil Nadu, India.

Department of Information Technology, Sona College of Technology, Salem, India.

出版信息

Network. 2025 Jan 20:1-21. doi: 10.1080/0954898X.2025.2451388.

Abstract

The image retrieval is the process of retrieving the relevant images to the query image with minimal searching time in internet. The problem of the conventional Content-Based Image Retrieval (CBIR) system is that they produce retrieval results for either colour images or grey scale images alone. Moreover, the CBIR system is more complex which consumes more time period for producing the significant retrieval results. These problems are overcome through the proposed methodologies stated in this work. In this paper, the General Image (GI) and Medical Image (MI) are retrieved using deep learning architecture. The proposed system is designed with feature computation module, Retrieval Convolutional Neural Network (RETCNN) module, and Distance computation algorithm. The distance computation algorithm is used to compute the distances between the query image and the images in the datasets and produces the retrieval results. The average precision and recall for the proposed RETCNN-based CBIRS is 98.98% and 99.15% respectively for GI category, and the average precision and recall for the proposed RETCNN-based CBIRS are 99.04% and 98.89% respectively for MI category. The significance of these experimental results is used to produce the higher image retrieval rate of the proposed system.

摘要

图像检索是在互联网上以最短搜索时间检索与查询图像相关图像的过程。传统的基于内容的图像检索(CBIR)系统的问题在于,它们仅针对彩色图像或灰度图像生成检索结果。此外,CBIR系统更为复杂,生成有意义的检索结果需要更长时间。本工作中提出的方法克服了这些问题。本文利用深度学习架构检索通用图像(GI)和医学图像(MI)。所提出的系统由特征计算模块、检索卷积神经网络(RETCNN)模块和距离计算算法组成。距离计算算法用于计算查询图像与数据集中图像之间的距离,并生成检索结果。对于GI类别,基于RETCNN的CBIRS的平均精度和召回率分别为98.98%和99.15%;对于MI类别,基于RETCNN的CBIRS的平均精度和召回率分别为99.04%和98.89%。这些实验结果的意义在于提高所提出系统的图像检索率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验