Suppr超能文献

通过人工智能驱动的牙弓表面拟合增强全景牙科成像:通过优化重建区域实现更高的清晰度和准确性。

Enhancing panoramic dental imaging with AI-driven arch surface fitting: achieving improved clarity and accuracy through an optimal reconstruction zone.

作者信息

Kim Nayeon, Park Hyeonju, Jung Yun-Hoa, Hwang Jae Joon

机构信息

Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Yangsan 50612, Korea.

Dental and Life Science Institute and Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.

出版信息

Dentomaxillofac Radiol. 2025 May 1;54(4):256-267. doi: 10.1093/dmfr/twaf006.

Abstract

OBJECTIVES

This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized 3-dimensional (3D) reconstruction zone centred on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.

METHODS

This retrospective study analysed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.3% male, 58.7% female). A 3D U-Net deep learning model segmented the jaw and dentition, facilitating panoramic view generation. During preprocessing, CBCT scans were binarized, and a cylindrical reconstruction method aligned the arch along a straight coordinate system, reducing data size for efficient processing. The 3D U-Net segmented the jaw and dentition in 2 steps, after which the panoramic view was reconstructed using 3D spline curves fitted to the arch, defining the optimal 3D reconstruction zone. This ensured the panoramic view captured essential anatomical details with high contrast and clarity. To evaluate performance, we compared contrast between tooth roots and alveolar bone and assessed intersection over union (IoU) values for tooth shapes and periapical lesions (#42, #44, #46) relative to the conventional method, demonstrating enhanced clarity and improved visualization of critical dental structures.

RESULTS

The proposed method outperformed the conventional approach, showing significant improvements in the contrast between tooth roots and alveolar bone, particularly for tooth #42. It also demonstrated higher IoU values in tooth morphology comparisons, indicating superior shape alignment. Additionally, when evaluating periapical lesions, our method achieved higher performance with thinner layers, resulting in several statistically significant outcomes. Specifically, average pixel values within lesions were higher for certain layer thicknesses, demonstrating enhanced visibility of lesion boundaries and better visualization.

CONCLUSIONS

The fully automated AI-based panoramic view generation method successfully created a 3D reconstruction zone centred on the teeth, enabling consistent observation of dental and surrounding tissue structures with high contrast across reconstruction widths. By accurately segmenting the dental arch and defining the optimal reconstruction zone, this method shows significant advantages in detecting pathological changes, potentially reducing clinician fatigue during interpretation while enhancing clinical decision-making accuracy. Future research will focus on further developing and testing this approach to ensure robust performance across diverse patient cases with varied dental and maxillofacial structures, thereby increasing the model's utility in clinical settings.

ADVANCES IN KNOWLEDGE

This study introduces a novel method for achieving clearer, well-aligned panoramic views focused on the dentition, providing significant improvements over conventional methods.

摘要

目的

本研究旨在开发一种自动化方法,通过创建以牙齿为中心的优化三维(3D)重建区域,生成更清晰、对齐良好的全景视图。该方法侧重于通过应用3D U-Net深度学习模型生成牙弓表面并对齐全景视图,以在关键牙齿特征(包括牙根、形态和根尖周病变)中实现高对比度和清晰度。

方法

这项回顾性研究分析了312例患者(平均年龄40岁;范围10 - 78岁;男性41.3%,女性58.7%)的匿名锥形束CT(CBCT)扫描数据。一个3D U-Net深度学习模型对颌骨和牙列进行分割,以促进全景视图的生成。在预处理过程中,对CBCT扫描进行二值化处理,并采用圆柱重建方法沿直线坐标系对齐牙弓,减少数据量以进行高效处理。3D U-Net分两步对颌骨和牙列进行分割,之后使用拟合牙弓的3D样条曲线重建全景视图,定义最佳3D重建区域。这确保了全景视图能够以高对比度和清晰度捕捉重要的解剖细节。为了评估性能,我们比较了牙根与牙槽骨之间的对比度,并评估了相对于传统方法的牙齿形状和根尖周病变(#42、#44、#46)的交并比(IoU)值,结果表明关键牙齿结构的清晰度得到了提高,可视化效果得到了改善。

结果

所提出的方法优于传统方法,在牙根与牙槽骨之间的对比度方面有显著改善,尤其是对于42号牙。在牙齿形态比较中也显示出更高的IoU值,表明形状对齐效果更好。此外,在评估根尖周病变时,我们的方法在较薄层时表现出更高的性能,产生了几个具有统计学意义的结果。具体而言,对于某些层厚,病变内的平均像素值更高,表明病变边界的可见性增强,可视化效果更好。

结论

基于人工智能的全自动全景视图生成方法成功创建了以牙齿为中心的3D重建区域,能够在整个重建宽度上以高对比度一致观察牙齿及周围组织结构。通过准确分割牙弓并定义最佳重建区域,该方法在检测病理变化方面显示出显著优势,可能减少临床医生在解读过程中的疲劳,同时提高临床决策的准确性。未来的研究将集中在进一步开发和测试这种方法,以确保在具有不同牙齿和颌面结构的各种患者病例中具有强大的性能,从而提高该模型在临床环境中的实用性。

知识进展

本研究引入了一种新颖的方法来实现更清晰、对齐良好的以牙列为重点的全景视图,与传统方法相比有显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验