Suppr超能文献

拟南芥中PHO1;H1介导的磷酸盐转运的结构机制。

Structural mechanism underlying PHO1;H1-mediated phosphate transport in Arabidopsis.

作者信息

Fang Sunzhenhe, Yang Yang, Zhang Xue, Yang Zhao, Zhang Minhua, Zhao Yang, Zhang Chensi, Yu Fang, Wang Yong-Fei, Zhang Peng

机构信息

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.

出版信息

Nat Plants. 2025 Feb;11(2):309-320. doi: 10.1038/s41477-024-01895-6. Epub 2025 Jan 21.

Abstract

Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation. Further molecular dynamic simulation and AlphaFold prediction support an open conformation. AtPHO1;H1 forms a domain-swapped homodimer that involves both the transmembrane ERD1/XPR1/SYG1 (EXS) domain and the cytoplasmic SYG1/Pho81/XPR1 (SPX) domain. The EXS domain presented by the SPX-EXS family represents a novel protein fold, and an independent substrate transport pathway and substrate-binding site are present in each EXS domain. Two gating residues, Trp719 and Tyr610, are identified above the substrate-binding site to control opening and closing of the pathway. The SPX domain features positively charged patches and/or residues at the dimer interface to accommodate inositol hexakisphosphate molecules, whose binding mediates dimerization and enhances AtPHO1;H1 activity. In addition, a C-terminal tail is required for AtPHO1;H1 activity. On the basis of structural and functional analysis, a working model for Pi efflux mediated by AtPHO1;H1 and its homologues was postulated, suggesting a channel-like mechanism. This study not only reveals the molecular and regulatory mechanism underlying Pi transport mediated by the unique SPX-EXS family, but also provides potential for crop engineering to enhance phosphorus-use efficiency in sustainable agriculture.

摘要

拟南芥磷酸盐转运蛋白1(AtPHO1)及其最接近的同源物AtPHO1;H1是将磷酸盐装载到木质部导管中以进行根到地上部分转运的磷酸盐转运体。AtPHO1和AtPHO1;H1是独特的SPX-EXS家族的典型成员,其结构和分子机制仍不清楚。在本研究中,我们确定了处于封闭构象的AtPHO1;H1与无机磷酸盐(Pi)和肌醇六磷酸结合的低温电子显微镜结构。进一步的分子动力学模拟和AlphaFold预测支持开放构象。AtPHO1;H1形成了一个结构域交换同型二聚体,该二聚体涉及跨膜的ERD1/XPR1/SYG1(EXS)结构域和细胞质的SYG1/Pho81/XPR1(SPX)结构域。SPX-EXS家族呈现的EXS结构域代表一种新型蛋白质折叠,每个EXS结构域中存在独立的底物转运途径和底物结合位点。在底物结合位点上方鉴定出两个门控残基Trp719和Tyr610,以控制该途径的开放和关闭。SPX结构域在二聚体界面处具有带正电的斑块和/或残基,以容纳肌醇六磷酸分子,其结合介导二聚化并增强AtPHO1;H1的活性。此外,AtPHO1;H1的活性需要一个C末端尾巴。基于结构和功能分析,提出了由AtPHO1;H1及其同源物介导的Pi外排的工作模型,表明存在类似通道的机制。这项研究不仅揭示了独特的SPX-EXS家族介导的Pi转运的分子和调控机制,还为作物工程提高可持续农业中的磷利用效率提供了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验