Suppr超能文献

用切口酶靶向BRCA1缺陷的PARP抑制剂耐药细胞揭示了切口切除是癌症的一个脆弱点。

Targeting BRCA1-deficient PARP inhibitor-resistant cells with nickases reveals nick resection as a cancer vulnerability.

作者信息

Whalen Jenna M, Earley Jillian, Wisniewski Christi, Mercurio Arthur M, Cantor Sharon B

机构信息

Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.

出版信息

Nat Cancer. 2025 Feb;6(2):278-291. doi: 10.1038/s43018-024-00902-1. Epub 2025 Jan 21.

Abstract

Tumors lacking the BRCA1 and BRCA2 (BRCA) hereditary breast cancer genes display heightened sensitivity to anti-cancer treatments, such as inhibitors of poly (ADP-ribose) polymerase 1 (PARP1). However, when resistance develops, treatments are lacking. Using CRISPR technology, we discovered that enhancing homologous recombination through increased DNA end resection in BRCA1-deficient cells by loss of the 53BP1-Shieldin complex-which is associated with resistance to PARP inhibitors-also heightens sensitivity to DNA nicks. The sensitivity is caused by hyper-resection of nicks into extensive single-stranded regions that trigger cell death. Based on these findings and that nicks limit tumor formation in mice, we propose nickases as a tool for personalized medicine. Moreover, our findings indicate that restricting nick expansion is a critical function of the 53BP1-Shieldin complex.

摘要

缺乏BRCA1和BRCA2(BRCA)遗传性乳腺癌基因的肿瘤对抗癌治疗表现出更高的敏感性,例如对聚(ADP - 核糖)聚合酶1(PARP1)抑制剂。然而,当产生耐药性时,却缺乏有效的治疗方法。利用CRISPR技术,我们发现通过缺失与PARP抑制剂耐药性相关的53BP1 - Shieldin复合物,增加BRCA1缺陷细胞中的DNA末端切除来增强同源重组,也会提高对DNA切口的敏感性。这种敏感性是由切口过度切除形成广泛的单链区域从而触发细胞死亡所导致的。基于这些发现以及切口限制小鼠肿瘤形成这一事实,我们提出将切口酶作为个性化医疗的一种工具。此外,我们的研究结果表明,限制切口扩展是53BP1 - Shieldin复合物的一项关键功能。

相似文献

1
Targeting BRCA1-deficient PARP inhibitor-resistant cells with nickases reveals nick resection as a cancer vulnerability.
Nat Cancer. 2025 Feb;6(2):278-291. doi: 10.1038/s43018-024-00902-1. Epub 2025 Jan 21.
2
Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells.
Nat Cell Biol. 2018 Aug;20(8):954-965. doi: 10.1038/s41556-018-0140-1. Epub 2018 Jul 18.
3
BRCA1 Mutation-Specific Responses to 53BP1 Loss-Induced Homologous Recombination and PARP Inhibitor Resistance.
Cell Rep. 2018 Sep 25;24(13):3513-3527.e7. doi: 10.1016/j.celrep.2018.08.086.
4
53BP1-shieldin-dependent DSB processing in BRCA1-deficient cells requires CST-Polα-primase fill-in synthesis.
Nat Cell Biol. 2022 Jan;24(1):51-61. doi: 10.1038/s41556-021-00812-9. Epub 2022 Jan 13.
5
Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.
Nat Commun. 2021 Jun 17;12(1):3636. doi: 10.1038/s41467-021-23463-8.
6
Loss of nuclear DNA ligase III reverts PARP inhibitor resistance in BRCA1/53BP1 double-deficient cells by exposing ssDNA gaps.
Mol Cell. 2021 Nov 18;81(22):4692-4708.e9. doi: 10.1016/j.molcel.2021.09.005. Epub 2021 Sep 22.
7
Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment.
Cell Cycle. 2012 Oct 15;11(20):3837-50. doi: 10.4161/cc.22026. Epub 2012 Sep 14.
8
Radiosensitivity Is an Acquired Vulnerability of PARPi-Resistant BRCA1-Deficient Tumors.
Cancer Res. 2019 Feb 1;79(3):452-460. doi: 10.1158/0008-5472.CAN-18-2077. Epub 2018 Dec 10.
9
53BP1 as a potential predictor of response in PARP inhibitor-treated homologous recombination-deficient ovarian cancer.
Gynecol Oncol. 2019 Apr;153(1):127-134. doi: 10.1016/j.ygyno.2019.01.015. Epub 2019 Jan 25.
10
Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency.
Mol Cell. 2021 Aug 5;81(15):3128-3144.e7. doi: 10.1016/j.molcel.2021.06.011. Epub 2021 Jul 2.

引用本文的文献

1
Targeting DNA damage sensors for cancer therapy.
DNA Repair (Amst). 2025 May;149:103841. doi: 10.1016/j.dnarep.2025.103841. Epub 2025 May 2.
2
Gap resection matters in BRCA mutant cancer.
Genes Dev. 2025 May 2;39(9-10):539-540. doi: 10.1101/gad.352827.125.

本文引用的文献

1
Structure and repair of replication-coupled DNA breaks.
Science. 2024 Aug 16;385(6710):eado3867. doi: 10.1126/science.ado3867.
2
Genetic separation of Brca1 functions reveal mutation-dependent Polθ vulnerabilities.
Nat Commun. 2023 Nov 24;14(1):7714. doi: 10.1038/s41467-023-43446-1.
3
RNA:DNA hybrids from Okazaki fragments contribute to establish the Ku-mediated barrier to replication-fork degradation.
Mol Cell. 2023 Apr 6;83(7):1061-1074.e6. doi: 10.1016/j.molcel.2023.02.008. Epub 2023 Mar 2.
4
POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells.
Mol Cell. 2022 Dec 15;82(24):4664-4680.e9. doi: 10.1016/j.molcel.2022.11.008. Epub 2022 Nov 30.
5
POLθ processes ssDNA gaps and promotes replication fork progression in BRCA1-deficient cells.
Cell Rep. 2022 Nov 29;41(9):111716. doi: 10.1016/j.celrep.2022.111716. Epub 2022 Nov 17.
6
8
CHAMP1 binds to REV7/FANCV and promotes homologous recombination repair.
Cell Rep. 2022 Aug 30;40(9):111297. doi: 10.1016/j.celrep.2022.111297.
9
Exploiting replication gaps for cancer therapy.
Mol Cell. 2022 Jul 7;82(13):2363-2369. doi: 10.1016/j.molcel.2022.04.023. Epub 2022 May 13.
10
The cell cycle effects of PARP inhibitors underlie their selectivity toward BRCA1/2-deficient cells.
Genes Dev. 2021 Sep 1;35(17-18):1271-1289. doi: 10.1101/gad.348479.121. Epub 2021 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验