Lin Menghan, Li Keqiao, Zhang Yuan, Pan Feng, Wu Wei, Zhang Jinfeng
Department of Statistics, Florida State University, Tallahassee, Florida, USA.
Proteins. 2025 Jun;93(6):1171-1180. doi: 10.1002/prot.26791. Epub 2025 Jan 22.
The structures of metalloproteins are essential for comprehending their functions and interactions. The breakthrough of AlphaFold has made it possible to predict protein structures with experimental accuracy. However, the type of metal ion that a metalloprotein binds and the binding structure are still not readily available, even with the predicted protein structure. In this study, we present DisDock, a deep learning method for predicting protein-metal docking. DisDock takes distogram of randomly initialized protein-ligand configuration as input and outputs the distogram of the predicted binding complex. It combines the U-net architecture with self-attention modules to enhance model performance. Taking inspiration from the physical principle that atoms in closer proximity display a stronger mutual attraction, this predictor capitalizes on geometric information to uncover latent characteristics indicative of atom interactions. To train our model, we employ a high-quality metalloprotein dataset sourced from the Mother of All Databases (MOAD). Experimental results demonstrate that our approach outperforms other existing methods in prediction accuracy for various types of metal ions.
金属蛋白的结构对于理解其功能和相互作用至关重要。AlphaFold的突破使得以实验精度预测蛋白质结构成为可能。然而,即使有了预测的蛋白质结构,金属蛋白所结合的金属离子类型和结合结构仍然难以确定。在本研究中,我们提出了DisDock,一种用于预测蛋白质-金属对接的深度学习方法。DisDock将随机初始化的蛋白质-配体构型的距离图作为输入,并输出预测结合复合物的距离图。它将U-net架构与自注意力模块相结合以提高模型性能。该预测器从原子距离越近相互吸引力越强这一物理原理中获得灵感,利用几何信息来揭示指示原子相互作用的潜在特征。为了训练我们的模型,我们使用了一个来自所有数据库之母(MOAD)的高质量金属蛋白数据集。实验结果表明,我们的方法在各种类型金属离子的预测准确性方面优于其他现有方法。