Suppr超能文献

蛋白质中金属结合位点的预测与表征。

The prediction and characterization of metal binding sites in proteins.

作者信息

Gregory D S, Martin A C, Cheetham J C, Rees A R

机构信息

Laboratory of Molecular Biophysics, Oxford, UK.

出版信息

Protein Eng. 1993 Jan;6(1):29-35. doi: 10.1093/protein/6.1.29.

Abstract

The rational engineering of novel functions into proteins can only be attempted when the underlying structural scaffold on which the new function is displayed and the structure of the target protein are both well understood. To introduce functions mediated by metals it is therefore necessary to identify the principal liganding residues for the chosen metal, the required architecture of the metal-ligand complex and sites within the target protein that could accommodate such sites. Here we present a method that applies structural information from the protein data bank to the ab initio design and characterization of novel metal binding sites. The prediction method has been tested on 28 metalloprotein structures from the Brookhaven Protein Data Bank. It successfully identified > 90% of the metal binding sites. In addition, we have used the method to design and characterize zinc binding sites in two antibody structures. Metal binding studies on one of these putative metalloantibodies showed metal binding, confirming the predictive power of the method.

摘要

只有当展示新功能的潜在结构支架以及目标蛋白质的结构都被充分理解时,才有可能尝试对蛋白质进行新功能的合理工程设计。因此,为了引入由金属介导的功能,有必要确定所选金属的主要配位残基、金属 - 配体复合物所需的结构以及目标蛋白质中可以容纳此类位点的部位。在这里,我们提出了一种将来自蛋白质数据库的结构信息应用于新型金属结合位点的从头设计和表征的方法。该预测方法已在布鲁克海文蛋白质数据库的28个金属蛋白结构上进行了测试。它成功识别出了超过90%的金属结合位点。此外,我们已使用该方法在两种抗体结构中设计和表征锌结合位点。对其中一种推定的金属抗体进行的金属结合研究表明存在金属结合,证实了该方法的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验