Hurdax Philipp, Hollerer Michael, Kern Christian S, Puschnig Peter, Sterrer Martin, Ramsey Michael G
Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria.
J Phys Chem C Nanomater Interfaces. 2025 Jan 8;129(2):1553-1561. doi: 10.1021/acs.jpcc.4c08104. eCollection 2025 Jan 16.
For weakly interacting adsorbate/substrate systems, the integer charge transfer (ICT) model describes how charge transfer across interfaces depends on the substrate work function. In particular, work function regimes where no charge transfer occurs (vacuum level alignment) can be distinguished from regions where integer charge transfer by electron tunneling from substrate to adsorbate or vice versa takes place (Fermi level pinning). While the formation of singly integer charged molecular anions and cations of organic semiconductors on various substrates has been well described by this model, the double integer charging regime has so far remained unexplored and experimentally elusive. Here, we extend the integer charge transfer model to the transition from single to double integer charging. This was made possible by combining a molecular adsorbate with high electron affinity (Perylenetetracarboxylic-dianhydride (PTCDA)) with a substrate with tunable work function (ultrathin MgO(001) films on Ag(001)). Our results, obtained with scanning tunneling microscopy (STM), photoemission spectroscopy (PES), work function measurements and density function theory (DFT) calculations, show that after completing the single negative charging of all molecules in a PTCDA monolayer in the first Fermi level pinning regime, the system transitions to a vacuum level alignment regime for singly charged molecules when the substrate work function is reduced, and finally enters the second Fermi level pinning regime at very low substrate work function, in which the molecules become doubly negatively charged.
对于弱相互作用的吸附质/衬底系统,整数电荷转移(ICT)模型描述了跨界面的电荷转移如何取决于衬底的功函数。具体而言,不发生电荷转移的功函数区域(真空能级对齐)可以与通过电子从衬底隧穿到吸附质或反之亦然发生整数电荷转移的区域(费米能级钉扎)区分开来。虽然该模型已经很好地描述了有机半导体在各种衬底上形成单整数带电的分子阴离子和阳离子的情况,但双整数充电区域迄今为止尚未得到探索,并且在实验上难以实现。在这里,我们将整数电荷转移模型扩展到从单整数充电到双整数充电的转变。通过将具有高电子亲和力的分子吸附质(苝四羧酸二酐(PTCDA))与具有可调功函数的衬底(Ag(001)上的超薄MgO(001)薄膜)相结合,实现了这一点。我们通过扫描隧道显微镜(STM)、光电子能谱(PES)、功函数测量和密度泛函理论(DFT)计算获得的结果表明,在第一个费米能级钉扎区域中PTCDA单层中的所有分子完成单负电荷充电后,当衬底功函数降低时,系统转变为单电荷分子的真空能级对齐区域,最终在非常低的衬底功函数下进入第二个费米能级钉扎区域,其中分子变为双负电荷。