Du Miao, Li Kai, Yu Ning, Hao Ze-Lin, Guo Jin-Zhi, Liang Hao-Jie, Gu Zhen-Yi, Zhang Xiao-Hua, Zhang Kai-Yang, Liu Yan, Yang Jia-Lin, Liu Yi-Tong, Wu Xing-Long
MOE Key Laboratory for UV Light-Emitting Materials and Technology, Department of Physics, Northeast Normal University, Changchun, 130024, P. R. China.
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
Adv Mater. 2025 Mar;37(9):e2418219. doi: 10.1002/adma.202418219. Epub 2025 Jan 22.
Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.8 e at voltage range of 2.0-4.45/1.5-4.45 V versus Na/Na (the capacity of 137.2/162.0 mAh g). The galvanostatic charge/discharge and in-situ X-ray diffraction tests indicate the sequential redox reactions and approximate solid solution phase transition behavior of HE-NaTMP. Density functional theory calculations analyze the migration pathways and energy barriers, further confirming the superior reaction kinetics of HE-NaTMP. Accordingly, the HE-NaTMP exhibits outstanding wide temperature applicability and can operate stably in the temperature range of -50-60 °C, accompanied by a capacity retention of 92.8% after 400 cycles at -40 °C and a capacity of 73.7 mAh g even at -50 °C. The assembled hard carbon//HE-NaTMP full-cell offers an energy density of ≈301 Wh kg based on total cathode and anode active mass, verifying the application feasibility of HE-NaTMP. This work provides an innovative and ultrafast pathway to rationally fabricate high-performance cathodes for SIBs.
避免严重的结构畸变、不可逆的相变以及实现稳定的多电子氧化还原对于推动高性能钠离子电池(SIB)的NASICON型正极材料的发展至关重要。在此,通过超快高温冲击制备了一种高熵NaVFeTiMnCr(PO)(HE-NaTMP)正极材料,该材料抑制了相分离的可能性,并在相对于Na/Na+的2.0-4.45/1.5-4.45 V电压范围内实现了2.4/2.8 e的可逆且稳定的多电子转移(容量为137.2/162.0 mAh g)。恒电流充放电和原位X射线衍射测试表明了HE-NaTMP的顺序氧化还原反应和近似固溶体相变行为。密度泛函理论计算分析了迁移路径和能垒,进一步证实了HE-NaTMP优异的反应动力学。因此,HE-NaTMP表现出出色的宽温度适用性,可在-50-60°C的温度范围内稳定运行,在-40°C下400次循环后容量保持率为92.8%,甚至在-50°C时容量为73.7 mAh g。组装的硬碳//HE-NaTMP全电池基于正极和负极活性物质总量提供了约301 Wh kg的能量密度,验证了HE-NaTMP的应用可行性。这项工作为合理制备高性能SIB正极提供了一条创新的超快途径。