Abadía Ignacio, Bruel Alice, Courtine Grégoire, Ijspeert Auke J, Ros Eduardo, Luque Niceto R
Research Center for Information and Communication Technologies, Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain.
Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Sci Robot. 2025 Jan 22;10(98):eadp2356. doi: 10.1126/scirobotics.adp2356.
Robots have to adjust their motor behavior to changing environments and variable task requirements to successfully operate in the real world and physically interact with humans. Thus, robotics strives to enable a broad spectrum of adjustable motor behavior, aiming to mimic the human ability to function in unstructured scenarios. In humans, motor behavior arises from the integrative action of the central nervous system and body biomechanics; motion must be understood from a neuromechanics perspective. Nervous regions such as the cerebellum facilitate learning, adaptation, and coordination of our motor responses, ultimately driven by muscle activation. Muscles, in turn, self-stabilize motion through mechanical viscoelasticity. In addition, the agonist-antagonist arrangement of muscles surrounding joints enables cocontraction, which can be regulated to enhance motion accuracy and adapt joint stiffness, thereby providing impedance modulation and broadening the motor repertoire. Here, we propose a control solution that harnesses neuromechanics to enable adjustable robot motor behavior. Our solution integrates a muscle model that replicates mechanical viscoelasticity and cocontraction together with a cerebellar network providing motor adaptation. The resulting cerebello-muscular controller drives the robot through torque commands in a feedback control loop. Changes in cocontraction modify the muscle dynamics, and the cerebellum provides motor adaptation without relying on prior analytical solutions, driving the robot in different motor tasks, including payload perturbations and operation across unknown terrains. Experimental results show that cocontraction modulates robot stiffness, performance accuracy, and robustness against external perturbations. Through cocontraction modulation, our cerebello-muscular torque controller enables a broad spectrum of robot motor behavior.
机器人必须调整其运动行为以适应不断变化的环境和多变的任务要求,从而在现实世界中成功运行并与人类进行物理交互。因此,机器人技术致力于实现广泛的可调节运动行为,旨在模仿人类在非结构化场景中的功能能力。在人类中,运动行为源于中枢神经系统和身体生物力学的综合作用;必须从神经力学的角度来理解运动。诸如小脑等神经区域促进我们运动反应的学习、适应和协调,最终由肌肉激活驱动。反过来,肌肉通过机械粘弹性实现运动的自我稳定。此外,关节周围肌肉的拮抗肌排列使得能够进行共同收缩,这种收缩可以被调节以提高运动精度并调整关节刚度,从而提供阻抗调制并拓宽运动技能。在此,我们提出一种利用神经力学来实现可调节机器人运动行为的控制解决方案。我们的解决方案集成了一个复制机械粘弹性和共同收缩的肌肉模型,以及一个提供运动适应的小脑网络。由此产生的小脑 - 肌肉控制器通过反馈控制回路中的扭矩命令驱动机器人。共同收缩的变化会改变肌肉动力学,而小脑在不依赖先验解析解的情况下提供运动适应,驱动机器人执行不同的运动任务,包括负载扰动和在未知地形上的操作。实验结果表明,共同收缩可调节机器人的刚度、性能精度以及对外部扰动的鲁棒性。通过共同收缩调制,我们的小脑 - 肌肉扭矩控制器实现了广泛的机器人运动行为。