Suppr超能文献

通过机器人的语言与动作交互学习实现组合性发展。

Development of compositionality through interactive learning of language and action of robots.

作者信息

Vijayaraghavan Prasanna, Queißer Jeffrey Frederic, Flores Sergio Verduzco, Tani Jun

机构信息

Okinawa Institute of Science and Technology, Okinawa, Japan.

出版信息

Sci Robot. 2025 Jan 22;10(98):eadp0751. doi: 10.1126/scirobotics.adp0751.

Abstract

Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle. The effectiveness and capabilities of this model were assessed through various simulation experiments conducted with a robot arm. Our results show that generalization in learning to unlearned verb-noun compositions is significantly enhanced when training variations of task composition are increased. We attribute this to self-organized compositional structures in linguistic latent state space being influenced substantially by sensorimotor learning. Ablation studies show that visual attention and working memory are essential to accurately generate visuomotor sequences to achieve linguistically represented goals. These insights advance our understanding of mechanisms underlying development of compositionality through interactions of linguistic and sensorimotor experience.

摘要

人类擅长将习得的行为应用于未学习过的情境。这种泛化行为的一个关键组成部分是我们将整体组合/分解为可重复使用部分的能力,这一属性被称为组合性。机器人技术中的一个基本问题涉及这一特性:如何通过联想学习,特别是当个体仅学习部分语言组合及其相应的感觉运动模式时,使语言组合性与感觉运动技能同时发展?为了解决这个问题,我们提出了一种受大脑启发的神经网络模型,该模型基于自由能原理,将视觉、本体感觉和语言整合到一个预测编码和主动推理的框架中。通过使用机器人手臂进行的各种模拟实验,评估了该模型的有效性和能力。我们的结果表明,当增加任务组合的训练变化时,学习未学习过的动词 - 名词组合的泛化能力会显著增强。我们将此归因于语言潜在状态空间中的自组织组合结构受到感觉运动学习的显著影响。消融研究表明,视觉注意力和工作记忆对于准确生成视觉运动序列以实现语言表示的目标至关重要。这些见解推进了我们对通过语言和感觉运动经验的相互作用实现组合性发展的潜在机制的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验